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Abstract—As an important technology in the field of Internet
of Things, activity recognition is a well-researched topic. Due to
its characteristics of no-invasion, no privacy leakage, high recog-
nition rate, and good user experience, Channel State Information
(CSI)-based is a great approach to solve the activity recognition
problem. However, commodity WiFi devices for identification are
usually in a complex electromagnetic environment, where the
interference caused by WiFi devices from channel overlap is the
most severe. To solve the above problem, we propose WiAnti,
a CSI-based activity recognition system which is robust to co-
channel Interference. By adaptive subcarrier selection, WiAnti
can achieve activity recognition with high accuracy. As demon-
strated by experimental results, in the same scenario with co-
channel interference, WiAnti yields 95.865% activity recognition
accuracy rate on average, which improve the recognition rate by
8% on average over WiFall.

I. INTRODUCTION

Activity recognition systems have inspired novel user in-
terfaces and new applications in smart cities, surveillance,
emergency response, and military missions [1]. However,
there are several problems in the development of the activity
recognition, such as low recognition accuracy, privacy leaks
and bad user experience [2]. To solve these problems, camera-
based [3]-[5] and sensor-based [6], [7] recognition schemes
have been well studied in the literature.

For the camera-based systems, such as KVMD [3], DSTIP
[4] and Kinect [5], they are usually equipped with high-
resolution cameras to record the body movement and classify
these records into different activities. These camera-based
activity recognition systems can obtain a high recognition ac-
curacy. However, the environment condition has a great effect
on the recognition accuracy, and the privacy problem limits
the scope of its application. As for sensor-based recognition
systems, multiple sensors attached to the body can monitor the
motion information of different parts of the body, and then
signal processing technology and classification technology
[8], [9] are adopted to classify which kind of activities the
current activity is [6], [7]. However, they need to perform the
professional prior calibration by experts before normal work,
in addition, the additional equipment worn on the body makes
the user experience worse.

In recent years, with the rapid development in wireless
techniques, several device-free approaches, such as Radio
Frequency (RF)-based and WiFi-based, have attracted more
and more attention due to the activity recognition without
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wearing additional equipment on the body [10]-[14]. The
RF-based recognition systems adopt the RF equipment to
produce the RF waves, which are affected by the movement
of human body [15], and the recognition accuracy of the RF-
based systems is high. However, the specialized RF equipment
is necessary. WiFi-based activity recognition systems can
utilize the off-the-shelf WiFi devices without adopting other
specialized equipment to monitor the activities in the Area of
Interest (Aol). One sending WiFi device and one receiving
WiFi device are placed in two different places of Aol, and the
receiving WiFi device receives the regular signals from the
sending WiFi device. The different activities have different
effects on the receiving signals, therefore the effective signal
processing methods can recognize different activities based on
the receiving WiFi signals.
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Fig. 1 Signal Propagation Model in Indoor Environment

WiFi-based activity recognition systems mainly utilize two
different kinds of signals, the Received Signal Strength Indi-
cation (RSSI) [13], [14] and the Channel State Information
(CSI) [10]-[12], to classify different activities. RSSI as the
average measured power of a received radio signal [16] is a
kind of coarse-grained radio channel measurement, and the
performance of the RSSI-based systems is greatly affected by
the link quality. In the complex environment, the multipath
propagation will cause the fluctuations of the link quality,
therefore the good performance cannot always be guaranteed
[17]. Compared with RSSI, CSI is a fine-grained value derived



from the physical layer of the WiFi device, which can reflect
the channel frequency response, to capture signal phase and
amplitude information of different subcarriers. More infor-
mation can be extracted to capture a subtle change of the
link quality. Therefore, the CSI-based systems have the better
robustness to the complex environment. As shown in Fig. 1,
the link quality will change with the multipath due to the body
movements, and the WiFi device can capture the changes and
use them to recognize activities.

In the CSI-based activity recognition systems, the co-
channel interference also has a great impact on the link quality,
which will cause a bad performance due to the confusion
between the activity and the co-channel interference. In the
literature, no researcher has addressed this problem. To over-
come the problem, we propose a CSI-based activity recogni-
tion system, WiAnti, which can effectively identify different
activities in the scenario with the co-channel interference. The
main contributions of this paper are expressed as three aspects:

e As far as we know, this work is the first to introduce
the effect of co-channel interference on the CSI-based
activity recognition system, and we propose a novel Anti-
interference and Non-intrusive Activity Recognition Sys-
tem (WiAnti) leveraging CSI from a single commodity
WiFi device.

To analyze the effect of the co-channel interference,
we carefully study the relationship between different
subcarriers of CSI by experiment. The interference due to
the overlap of WiFi channels will reduce the CSI pack-
ets per unit time, and the correlation between different
subcarriers will be weakened.

To improve the performance of WiAnti in the interfer-
ence scenario, a subcarrier selection scheme is designed
to dynamically choose several subcarriers with weak
correlation, which can represent the changes caused by
the interference. Then, the corresponding features are
extracted and adopted to classify different activities with
a high recognition accuracy.

The rest of the paper is organized as follows. Section II
introduces related work. Section III presents background ma-
terials on CSI, CSMA/CA, IEEE 802.11n standard. Then, in
Section IV, the impact of co-channel interference on CSI is
shown and a CSI-based activity recognition system WiAnti is
proposed. Next, the evaluation results through experiments are
presented in Section V. Section VI concludes the paper.

II. RELATED WORK

Considering the characteristics of the no-invasion and awe-
some user experience, the device-free activity recognition
approaches have attracted more and more attention [18].
According to the signal used for activity detection, existing
device-free activity recognition systems can be grouped into
three categories: RF-based, RSSI-based and CSI-based.

If a device-free activity recognition system ideally satisfies
the following three features, it is possible to be deployed
ubiquitously with existing infrastructure, which will easy to
promote.
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o Informative measurements: Contain information to rec-
ognize activity

o Universal: Use existing equipment or deployable on
existing infrastructure

o Robustness to Interference: Reduce or eliminate the
effects of interference

Robustness to
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Fig. 2 Differentiating different approaches to device-free
activity recognition

A Venn diagram with the three features of informative
measurements, universal and robustness to interference is
drawn. Fig. 2 is used to differentiate different approaches,
and it shows which solution is capable of dealing with which
requirements.

A. RF-based techniques

Fine-grained RF measurements can be obtained with using
specialized hardwares, such as software defined radio (SDR)
and universal software radio peripheral (USPR). The SDR can
be adopted to measure the fluctuation of the strength of the
received signal, which is caused by the movement of indi-
viduals. Then, the speed of human walking can be evaluated
through the effective signal processing technology [19]. WiSee
used USRP to capture the OFDM signals and measured the
Doppler shift in signals reflected by bodies to recognize a set
of nine different activities with a high accuracy [20]. However,
all of these schemes need a specialized hardware to achieve a
high activity recognition accuracy, which does not satisfy the
universal requirement. The RF-based system can be expressed
as a black circle in Fig. 2.

B. RSSI-based techniques

RSSTI is an indication which measures the power of received
radio signal. Because different activities cause different RSSI
fluctuations, activities can be recognized with using the RSSI
signals. PAWS designed an online activity recognition system,
which explored WiFi ambient signals for RSSI fingerprint of
different activities [13]. Wigest leveraged changes in WiFi
signal strength to sense in-air hand gestures around the user’s
mobile device [13]. However, these approaches can only do
coarse-grained activity recognition because RSSI falls entirely
in the time domain, while frequency features are totally
neglected. Suffering from performance degradation due to
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multipath effect is also a problem for RSSI-based system [21].
The RSSI-based recognition system can be expressed as a
green hexagon in Fig. 2.

C. CSI-based techniques

Compared with RSSI, CSI is a fine-grained value derived
from the physical layer of the WiFi device. In CSI-based
systems, features are descriptions of a motion from different
perspectives, i.e., time domain and frequency domain. Frog
Eye proposed a novel device-free crowd counting method
based on CSI measurements [17]. E-eyes presented location-
oriented activity identification such as cooking and gaming
[10]. WiShop analyzed shopper’s behavior through WiFi sig-
nals [22]. WiFall-1 exploited the special diversity of CSI
to detect human fall in an indoor environment and used
subcarrier fusion method for data dimension reduction [10].
Compared with WiFall-1, WiFall-2 used the subcarrier fusion
method with frequency as a weight indicator [12]. However,
most existing works do not consider the effects of co-channel
interference, their experimental results are based on a non-
disturbing environment, and the performance of these systems
will degrade due to co-channel interference. The CSI-based
system can be expressed as a blue diamond in Fig. 2. To
overcome these drawbacks, we present WiAnti, a CSI-based
activity recognition system which is robust to co-channel
Interference. This means our proposed system WiAnti can deal
with all the three requirements.

III. BACKGROUND
A. Overview of Channel State Information

In the frequency domain, the narrow-band flat-fading chan-
nel with multiple transmit and receive antennas (MIMO) can
be modeled as:

)]

where 4 denotes the stream corresponding to the i*" transmit
antenna and the receive antenna combination, x;, y; denote
the transmitted and received signal vectors respectively, n; is
the noise vector, H is the channel matrix.

H can be estimated at the receiver when a known sequence
x1,Ta,- - Ty is transmitted. As the IEEE 802.11n standard
is a protocol based on OFDM technology, it divides the 2.4
to 2.4835 GHz band into 14 channels, each channel has 20M
bandwidth and there are 56 subcarriers in each channel, so the
estimated value of H for N subcarriers can be represented as:

“hj,---  hn]T 2)

In the above equation, the frequency response of k" sub-
carrier can be expressed as:

yi=Huxz; +n;

H = [hq,ha, -

hk _ ‘hk:| ejsian

3)

where |hg| and 6, are the amplitude and phase of the k'"
subcarrier, respectively.

Using Intel 5300 Network Interface Card (NIC), WiAnti is
capable of receiving six CSI streams simultaneously and 30
subcarriers in each stream. Therefore, 180 groups (3 x 2 x 30)
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of CSI values can be extracted from each packet, and the value
of H can be represented as:

hi1 hi2 his h1 30
ha1 hz2 hags h2,30

Hij=| . : : . )
he,1 he2 hegs he,30

)

where h; i is the CSI value for the k*" subcarrier in the i‘"
stream.

B. Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA)

As a distributed protocol, CSMA is among the most widely
implemented MAC protocols. In CSMA/CA, the backlogged
node waits for a random period of silent time before transmit-
ting, which is called back-off time. If no transmission is sensed
by the node for the entire back-off time, the transmission of
the node starts. Otherwise, the node defers as soon as it senses
an ongoing transmission. When co-channel interference exists,
the probability that the node senses an ongoing transmission
becomes larger and the number of delays increases, which
results in decreasing of the received packet number per unit
time.

C. IEEE 802.11n standard for co-interference response

In CSMA/CA mechanism of IEEE 802.11n standard, a
device can send packets only when it detects that all the sub-
channels of the working channel are idle.

However, in the scenario with co-channel interference, the
subcarriers of two channel overlaps in frequency spectrum, and
the probability of packets being delayed for delivery increases.
To deal with such problem, 802.11n standard uses a more
flexible subcarrier power allocation method. The spectrally-
overlapped subcarriers will be allocated more power, which
lead to a greater advantage in competing for the sub-channels.
On the contrary, because the subcarriers in non-overlapping
areas have no need to compete, less power will be allocated
to the subcarriers in non-overlapping areas. By this way, the
ability for competing whole channel is improved. As a result,
the correlations between subcarriers are weakened using the
unbalanced power allocation method.

IV. SYSTEM DESIGN AND METHODOLOGY

In this section, the overall structure of WiAnti system is
introduced.

A. System Overview

The workflow of the system WiAnti given in Fig. 3 con-
tains four main parts: judgment of interference, adaptive data
preprocessing, feature extraction and classification part.

The existence of the co-channel or adjacent-channel inter-
ference is judged in first part. Then, according to the judgment,
different strategies can be adopted in the second part. In the
scenario without co-channel interference, the data dimension
will be reduced by subcarrier fusion. On the contrary, in the
scenario with co-channel interference, the subcarrier selection
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Fig. 3 WiAnti workflow

method will be used to improve the recognition accuracy rate.
Next, the features will be extracted in the third part. Finally,
the activities will be classified in the last part.

B. Co-channel Interference Detection

As introduced in Section III-B, in the scenario without co-
channel interference, the channel is exclusive. The AP sends
packets as usual and the number of received packets does
not decrease per unit time. However, in the scenario with co-
channel interference, the number of received packets per unit
time decreases. Therefore, by recording the length of received
packets per unit time, the existence of co-channel interference
can be detected.

C. Correlation Judgment and Subcarrier Selection

In 802.11n standard, in order to compete for the channel, the
power of spectrally-overlapped subcarriers increases, resulting
in the corresponding subcarriers dominant in competing sub-
channels. However, the subcarriers in non-interference area
occupy sub-channels alone and do not need to compete, so
the power of these subcarriers does not increase, which lead
to the different power between the subcarriers in the spectrally-
overlapped area and the non-overlapping area. However, the
power difference causes the difference of each subcarrier’s
amplitude, and the correlations of subcarriers are weakened.

As shown in Fig. 4, the graph reflects the correlation matrix,
each element in the matrix corresponds to the magnitude
of the correlation coefficient between two subcarriers’ am-
plitude. Red represents the correlation coefficient of 1 and
blue represents the correlation coefficient of 0. Fig. 4(a)

(a) Without interference

(b) Co-channel interference

Fig. 4 Correlation Matrix of CSI Subcarriers in One Stream

depicts the strong correlation between 30 subcarriers in a
stream without co-channel interference. When the number of
spaced subcarriers between two subcarriers is less than 14, the
correlation coefficient can reach more than 0.9. The correlation
between the 30 subcarriers with co-channel interference is
shown in Fig. 4(b). Compared to Fig. 4(a), the red covered area
in Fig. 4(b) has a significantly thinner line, which represents
the co-channel interference weakens the correlation between
subcarriers.

However, since each action takes place in several seconds,
the correlation matrix of a moment of CSI may not fully reflect
the correlation between the subcarriers. For a fine-grained
description of the correlation between subcarriers, the Pearson
correlation coefficient of variation can be used to represent
sequence correlation.

The Pearson correlation coefficient defines the strength of
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Fig. 5 Time series of each Subcarrier Correlation Matrix

the correlation using the covariance and standard deviation of
the two variables (xz and y):

Tey = Z?=1 (x: = T)(y: — )
Vi =2 S -

where n is the length of sequence x(n) and sequence y(n).
T represents the mean of sequence x(n), and g represents the
mean of sequence y(n).

As described in the Section II, most traditional subcarrier
fusion methods have one common characteristic which rep-
resents all subcarriers with one or several fused subcarriers
for data dimension reduction [12] [22] [23]. However, only
if two subcarriers are similar, one can be represented by the
other. As shown in Fig. 5(a), the correlation between any two
subcarrier sequences without co-channel interference is strong,
the mean of its correlation coefficient can reach 0.85. Under
such circumstances, it is reasonable to represent the features
of other subcarriers with the fused subcarrier features.

However, Fig. 5(b) depicts the sequence correlation coeffi-
cient between any two subcarriers is rarely reach 0.3 in the
scenario with co-channel interference, so it is unreasonable
to use a fused subcarrier to represent other subcarriers. Two
methods can be used to cope with the performance degradation
of traditional subcarrier fusion methods caused by correla-
tion weakened. In the first method, the strongly correlated
subcarriers are selected to fuse. The second method is to
select several weakly correlated subcarriers without fuzing.
The second method is more suitable than the first method
for the scenario with co-channel interference. This is because
the correlations between the spectrally-overlapped subcarriers
and the non-overlapping subcarriers are weak. However, the
correlations between subcarriers which in overlapping areas
are strong, so do the subcarriers in non-overlapping areas. Ac-
cording to the first method, the strongly correlated subcarriers
will be selected, so the fused subcarriers are either from the
overlapping area or from the non-overlapping area, and the
fused subcarriers from the first method do not contain the
spatial characteristics of all subcarriers. Compared with the
first method, the selected subcarriers from the second method
contain more spatial characteristics of all subcarriers, this is
because the subcarriers are selected from both overlapping area
and non-overlapping area.

&)
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Based on the above analysis, a dynamic subcarrier selection
method is employed in WiAnti with co-channel interference.
The main idea of the subcarrier selection method is to select
the weak correlated subcarriers without fuzing. By using the
features of selected subcarriers to represent all subcarrier
characteristics, the data dimension and the loss of information
can be reduced.

The subcarrier selection algorithm includes three steps:

o Step 1 In each sliding window sample, subcarriers with
weak correlation are selected, and the selected subcarriers
form subcarrier combination.

o Step 2 Through the statistical method, the subcarrier
combination which has the most frequent occurrences is
selected as input value of step 3.

o Step 3 Because the same action reflects different phase
changes for subcarriers whose center frequencies are
different, the subcarriers in the selected subcarrier com-
bination C should be selected from all three sections of
[0,10), [10,20) and [20, 30]. If the output value of step
2 does not meet this condition, we choose the second
most frequent subcarrier combination instead of the most
frequent subcarrier combination, and the rest may be
deduced by analogy.

In step 1, for each sliding window, we calculate inter-
subcarrier correlation coefficients by Person’s method to gen-
erate the correlation matrix R, ,. The element 7, , in R, ,
represents the coefficient of sequence correlation between
subcarrier z and subcarrier y. We sort the elements which
inside the matrix R, , in ascending order to generate a new
array I. According to the principle with the lowest correlation
coefficient, we choose the two subcarriers with the weakest
correlation. Subcarriers are gradually added to subcarrier com-
bination according to the principle of the weakest total correla-
tion until the number of subcarriers in subcarrier combination
is n (the expected number of selected subcarriers). Finally, the
selected subcarriers in each sliding window are determined.

In consideration of the interference changes in different
sliding windows, we choose a subcarrier combination that
fits all sliding windows. Step 2 is a effective statistic for the
subcarrier combination in each sliding window. The mode of
subcarrier combinations in all sliding windows is used as the
input of step 3.

Because the phase of CSI is a important spatial feature and
the same action has different phase changes on subcarriers of
different center frequencies, the purpose of step 3 is to select
the subcarrier combination which can represent the spatial
characteristics of different subcarrier sections.

As for the complexity of the subcarrier selection algorithm,
the complexity linearly increases with the data due to the fact
that the method of Person’s correlation coefficient used by the
algorithm is linearly related to the data.

Algorithm 1 illustrates an algorithmic specification of the
proposed dynamic subcarrier selection algorithm.
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Algorithm 1 Dynamic Subcarrier Selection Algorithm
Input: CSI stream(z), the length of each stream is L.
Output: The selected subcarrier combination C, which
contain n (Less than 30, the text is set to 5) subcarri-
ers.

1: Initialize: The CSI stream is partitioned according to the
sliding window size cw. Since there are ¢ streams, the total
amount of sliding windows is N =4 x L%J

2: for f <= N, where f represents the ft" sliding window
do

3:  Calculate inter-subcarrier correlation coefficients ac-

cording to Person’s method to generate matrix R ,.

4. Iy := the elements which inside the matrix R, , in

accordance with the small to large order to generate an
array Iy

5. my:=min(ly)

According to corrcoef(a,b) = my, select two subcar-
riers with the weakest correlation (a and b), at this point

Cy ={a,b}
7. while |Cf| <=n do
8 Cy =: Cy U new, make sure that the sum of the

correlation coefficients between the new and the
subcarriers in C'y is the smallest.

9:  end while

10: C.=CU {Cf}

1. f:=f+1

12: end for

13: while C # () do

14:  if Mode(C)N[0,10) # 0 and Mode(C)N[10,20) # 0

and Mode(C) N [20,30] # () then

15: Cs := Mode(C)

16: break

17:  else

18: che[l’f] = Mode(C’), C - {Cwe[l,f]}

19:  end if

20: end while

D. Data Processing, Feature Extraction, and Classification

Data preprocessing has two main steps. Firstly, the weighted
moving average is used to smooth CSI signal. Secondly, the
sliding windows over data streams are used to segment the
action samples, and the size of each sliding window is 500.

With the reference to the articles [10] [12] [23], totally, eight
kinds of time domain features and two kinds of frequency
domain features are selected. The time domain features are
the mean of CSI, variance, maximum, minimum, median, first
quartile, third quartile, and information entropy. The frequency
domain features are spectrum energy and maximum frequency
domain.

To evaluate the performance of dynamic subcarrier selection
algorithm, four classical classification methods are used to
recognize activities, which are the Random Forest (RF), the
Decision Tree (DT), the Decision Tree Regression (DR) and
the k-NearestNeighbor (kNN).

V. EXPERIMENT AND EVALUATION

This section illustrates the implementation and experimental
evaluation of WiAnti. Firstly, the experimental settings are
introduced. Then, the co-channel interference assessment is
presented. Finally, the recognition accuracy rates of WiAnti
and other systems in the scenario with co-channel interference
are given.

A. Experimental Settings

As shown in Fig. 6, the experiment is conducted in the
6.1m x 4m room which contains table and chairs for everyday
use. The distance between point 1 and point 2 is 3 meters. The
distance between laptop C and laptop D is 30cm. The router
A and laptop C are placed in opposite positions. The model
of two laptops is Thinkpad 420i, and the operating system
is Ubuntu 14.04. Laptops C and D are equipped with Intel
WiFi Link 5300 (i-w15300) 802.11n NICs. The model of two
routers is TL-WDR7500V3.0, which contains two 2.4GHZ
band transmit antennas. All the NICs are equipped with three
antennas, the 2 x 3 MIMO system produces six streams and
achieves the spacial diversity.

Office 4m X 6.1m

I"' ~ (i) I #
. I

0

Fig. 6 The schematic diagram of experimental scene

Most of the activities such as lifting leg, closing leg and fall
down happen in a few seconds. In order to capture the signal
affect by these short time activities, the beacon rate should be
set at 100 packets per second.

To measure the impact of interference on CSI, the following
settings are necessary:

The scenario without co-channel interference and with co-
channel interference comparison experiment is given.

In the scenario without co-channel interference, router A is
set to channel 1, the laptop C and router A form a wireless
link. At this point, the router B and laptop D are powered off.

In the scenario with co-channel interference, the router B
is set to channel 3. The difference center frequency between
the channel 3 and the channel 1 is 10 MHz, and the number
of the spectrally-overlapped subcarriers occupy half of all
subcarriers. Laptop D is connected to the router B, form a
wireless link and the beacon rate of router B is set to 100
packets per second. The packet length is 25000 bytes, so the
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amount of data generated by the router B per second is about
2.5 Mbytes.

We perform the experiment on six participants in both co-
channel interference scenario and non-interference scenario.
We also design four different actions, i.e., standing at point 1,
walking between point 1 and point 2, running between point
1 and point 2 and sitting at point 1, and a reference state,
i.e., empty room. Each participant provides 54 samples for
each action and state. Actions are set to reflect the impact
of co-channel interference on CSI with the movement of
people, while empty room state reflects the impact of co-
channel interference on CSI without human motion. Totally,
2 %X 6 x 5 x b4 samples are collected for training and testing.

B. Co-channel Interference Assessment

By recording the number of CSI received packets per unit
time, the existence of co-interference can be judged. The
impact of subcarrier spectrally-overlap on packet reception is
demonstrated by experiment. We change the channel of router
B from 1 to 14. The rest of the settings are the same as
Section V-A.
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Fig. 7 The number of received packets in six minutes

Fig. 7 shows the number of packets received by laptop
C in six minutes when the channel of B is different. Each
experiment is repeated ten times, taking the average as the
number of received packets per unit time. The experimental
results can be divided into two cases. In the first case, we
change the channel of router B from 6 to 14. In this case,
the channel of router B and router A have no spectrally-
overlapped subcarriers. The number of CSI received packets
during six-minute is about 34000, smaller than the theoretical
6 x 60 x 100, this is because WiFi is a wireless link, and
instability is inherently due to attenuation or multipath effect.
In the second case, the channel of router B is changed from
1 to 5, and router B and router A have spectrally-overlapped
subcarriers. It can be seen from the Fig. 7 that the CSI received
packets per unit time decrease. With the setting number of B’s
channel approaches to 1 (the channel of router A), the number
of spectrally-overlapped subcarriers increases, leading to the
probability of the channel enter back-off time increases, so the
CSI received packets per unit time will decrease.
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From the above analysis, by recording the number of CSI
received packets per unit time and the CSI sampling frequency,
the existence of interference can be determined.

C. Performance Evaluation
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Fig. 8 Comparison Of Different Methods Of Recognition
Accuracy Rates

A Python module Scikit-learn as the machine learning
library is adopted to quickly realize RF, DT, DR, and kNN.
In order to avoid overfitting, 10-fold cross-validation is used
to train these classifiers. The recognition accuracy (RA) used
in this paper is defined as the ratio of the number of cor-
rectly classified activities to the number of the whole testing
activities, which can be expressed as follows,

number of correctly recognized activities

RA= x 100%

(6)
Fig. 8 shows the recognition accuracy rates of WiAnti
compared with other methods in different classifiers. We find
that WiAnti is capable of identifying activities accurately in
the scenario with co-channel interference, by four different
classifiers testing, WiAnti achieves 95.865% recognition ac-
curacy rate on average, and the RF classifier can obtain the
highest classification accuracy rate 98.09%. Compared to the
baseline method WiFall-2, WiAnti gets 8% higher recognition
accuracy rate in the scenario with co-channel interference.
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Fig. 9 Confusion Matrix for Different Systems

In order to see the effects of co-channel interference on the
performances of different systems, the two confusion matrices
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are presented. The horizontal coordinates represent the type
of predicted actions, while the vertical coordinates represent
the actual type of actions, 1 to 5 represent a reference state,
i.e., empty room, and four different activities, i.e., running,
sitting, standing and walking. Fig. 9(a) shows the confusion
matrix for WiAnti, compared with the confusion matrix for
WiFall-2 as shown in Fig. 9(b), WiAnti can not only classify
coarse-grained actions, i.e., empty rooms, sitting, standing,
with high recognition accuracy rate close to 100%, but also
achieve 95% of the fine-grained activities, i.e., walking and
running recognition accuracy rate. Fig. 9(b) depicts WiFall can
achieve pretty high classification rate in coarse-grained activ-
ities, however, co-channel interference has quite a big impact
on the fine-grained activity recognition. In consideration of
subcarrier correlation varies with co-interference, WiAnti gets
less misclassification rate in fine-grained activities, 8% of the
walking samples are judged as the running samples, while 5%
of the running samples are judged as the walking samples.

VI. CONCLUSION

In this paper, we investigate the performance of CSI-based
activity recognition system in the scenario with co-channel
interference, and then we present WiAnti, a CSI-based activity
recognition system which is robust to co-channel interference.
WiAnti is based on a single commodity off-the-shelf WiFi
device, which enables easy system set-up and maintenance.
At the same time, a novel and dynamic subcarrier selection
method is proposed. Compared with the traditional method,
it can improve the recognition performance by 8% in the
scenario with co-channel interference. For future work, we
will discuss more effects of co-channel interference on CSI-
based recognition system.
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