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Towards Anti-Interference Human Activity
Recognition Based on WiFi Subcarrier

Correlation Selection
Jinyang Huang , Bin Liu , Chao Chen, Hongxin Jin, Zhiqiang Liu , Chi Zhang , and Nenghai Yu

Abstract—As an essential technology in the field of the Internet
of Things, Human activity recognition (HAR) is a well-researched
topic. Recently, some state-of-the-art WiFi-based HAR systems
have been presented due to its characteristics of no-invasion, no
privacy leakage, and high recognition accuracy rates (RARs). How-
ever, the commodity WiFi devices for identification are usually in
a complex electromagnetic environment, where the interference
caused by WiFi devices from channel overlap is common and
severe. Furthermore, our extensive experiments show that the per-
formance of these pioneer WiFi-based HAR systems may degrade
significantly in co-channel interference (CCI) scenarios. To solve
the above problem, we propose WiAnti, a WiFi-based HAR system
that is robust to CCI. Two adaptive subcarrier selection algorithms,
WiAnti-Pearson and WiAnti-DTW, are proposed to mitigate the
impact of CCI and to improve the recognition performance in CCI
scenarios. As demonstrated in the experimental results, WiAnti-
Pearson yields a 95% RAR on average, which can improve up to
a 14% RAR in the presence of constant CCI. Moreover, WiAnti-
DTW achieves an 8% higher RAR in the varying CCI scenario,
reaching 94%.

Index Terms—WiFi CSI, human activity recognition (HAR), co-
channel interference, anti-interference.

I. INTRODUCTION

HUMAN activity recognition (HAR) systems have inspired
novel user interfaces and new applications in smart cities,

surveillance, and military missions [1]. To perform HAR in
various situations, camera-based [2], [3] and sensor-based [4],
[5] HAR schemes have been well studied in the literature.
However, these traditional methods have several problems, such
as privacy leaks, low recognition accuracy rates (RARs), and
bad user experience [6].

For camera-based HAR systems, such as KVMD [2], and
DSTIP [3], they are usually equipped with high-resolution
cameras to record body movements and classify these records
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into different activities. These camera-based HAR systems can
obtain high RARs. However, the environment condition has a
significant effect on its recognition performance, and the privacy
problem limits the scope of its applications. As for sensor-based
HAR systems, multiple sensors attached to the body can monitor
the motion information of different body parts, and then signal
processing technology and classification technology are adopted
to classify the current activity accordingly [4], [5]. However, they
need to perform the prior professional calibration by experts
before working well, and the additional equipment attached to
the body downgrades the user experience.

In recent years, with the rapid development in wireless tech-
niques, several device-free approaches, such as dedicated radio
frequency (DRF)-based methods and WiFi-based methods, have
attracted more and more attention [7]–[11]. Their key advan-
tages over camera-based and sensor-based methods are that they
do not require lighting, preserve user privacy, and do not require
users to carry any devices. Specifically, DRF-based HAR sys-
tems basically employ the dedicated equipment, e.g., software
defined radio (SDR) and universal software radio peripheral
(USRP), to capture the channel frequency responses (CFR) of
signals and measure these CFR changes reflected by the human
body to recognize distinct activities [12], [13]. The performance
of DRF-based systems is always satisfactory. However, these
systems cannot realize dual purposes, i.e., communication and
HAR, at the same time. Moreover, the DRF equipment is
necessary and irreplaceable, but the price of the equipment is
usually high. WiFi-based HAR systems can utilize off-the-shelf
WiFi devices without adopting other specialized equipment to
monitor the activities in the Area of Interest (AoI). One sending
WiFi device and one receiving WiFi device are placed in two
different places of AoI, and the receiving WiFi device receives
the regular signals from the sending WiFi device. Since the
different activities have distinct effects on the received signals,
the valid signal processing methods can recognize different
activities accordingly based on the received WiFi signals.

WiFi-based HAR systems mainly utilize two different kinds
of signals, the Received Signal Strength Indication (RSSI) [10],
[11] and the Channel State Information (CSI) [7]–[9], to clas-
sify different motions. RSSI, as the average measured power
of the received radio signal [14], is a kind of coarse-grained
radio channel measurement, and the performance of RSSI-based
systems is greatly affected by the link quality. In the complex
environment, the multipath propagation causes the fluctuations
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of the link quality. Therefore, good performance cannot always
be guaranteed [15]. Compared with RSSI, CSI is a fine-grained
value derived from the physical layer of the WiFi device [8],
which can reflect the channel frequency response to capture the
signal phase and amplitude information of different subcarriers.
More information can be extracted to capture a subtle change
of the link quality. Therefore, CSI-based systems have better
robustness to the complex environment.

Unfortunately, according to the channel assignment strategy
of the IEEE 802.11n standard [16], the overlapped subcarriers
exist in the adjacent five WiFi channels. Furthermore, multi-
ple routers are usually placed in one place, and each router
would randomly choose the channel for transmission. Thus,
the occurrence of co-channel interference (CCI) is inevitable.
Moreover, CCI also has severe negative impacts on WiFi signals,
i.e., the reduction of packet number and the weaken of subcarrier
correlation, which finally leads to the degradation of WiFi-based
HAR system performance. In the literature, no researcher has
addressed this problem. To overcome the problem, we propose a
CSI-based HAR system, WiAnti, which can effectively classify
various motions in CCI scenarios. The main contributions of this
paper are expressed in three aspects:
� As far as we know, this work is the first to introduce the

effect of CCI on WiFi-based HAR systems, and we propose
a novel Anti-interference and Non-intrusive HAR System
WiAnti leveraging CSI from a single commodity WiFi
device.

� We propose two novel subcarrier selection algorithms, i.e.,
Pearson (Pearson Correlation Coefficient)-based and DTW
(Dynamic Time Warping)-based algorithms to deal with
various CCI scenarios. Instead of simply fusing subcarri-
ers, these two algorithms dynamically select subcarriers
according to their correlation changes. We show that these
two algorithms can select subcarriers with more motion
information and outperform the state-of-the-art subcarrier
fusion algorithms while reducing the data dimension.

� Extensive experiments of different CCI have been per-
formed in various scenarios. The results of the experiments
show that WiAnti achieves a 95% RAR on average in the
various CCI scenarios and obtains an 11% higher RAR on
average than the pioneer solutions.

The rest of the paper is organized as follows. Section II
introduces the related works. Section III presents background
materials on CSI and the impact of CCI on CSI. Then, in
Section IV, a CSI-based HAR system WiAnti is proposed,
and two subcarrier selection algorithms, WiAnti-Pearson and
WiAnti-DTW, are introduced accordingly. Next, the evaluation
results through experiments, and the impact of various factors
on different algorithm performance are presented in Section V.
Section VI concludes the paper.

II. RELATED WORK

According to the signal used for motion detection, existing
device-free HAR systems can be grouped into three categories:
DRF-based, RSSI-based, and CSI-based.

Generally, there are three requirements for device-free HAR
systems, including informative measurements, universal, and
robustness to interference.
� Informative measurements: Contain information to rec-

ognize activity accurately.
� Universal: Use existing equipment or deployable on off-

the-shelf infrastructure.
� Robustness to Interference: Reduce or eliminate the ef-

fects of interference.
To summarize the pros and cons of different device-free HAR

methods, a Venn diagram with the three features of informa-
tive measurements, universal, and robustness to interference is
drawn in Fig. 2. This diagram is used to differentiate various
approaches, and shows which solution can deal with which
requirements.

A. DRF-Based Techniques

Fine-grained DRF measurements can be obtained by using
dedicated hardware, such as SDR and USRP. The SDR was
adopted to measure the received signal fluctuations, which were
caused by the individual movement. Then, the speed of human
walking was evaluated through the effective signal processing
technology [12]. WiSee used USRP to capture the Orthogonal
Frequency Division Multiplexing (OFDM) signals and mea-
sured the Doppler shift in signals reflected by bodies to recognize
a set of nine different activities with a high RAR [17]. However,
all of these schemes need dedicated hardware to achieve high
RARs, which do not satisfy the universal requirement. Thus,
DRF-based systems are expressed as a black circle in Fig. 2.

B. RSSI-Based Techniques

RSSI is an indication to measure the received signal power.
Since different activities cause distinct RSSI fluctuations, activ-
ities can be recognized by processing the RSSI signals accord-
ingly. PAWS designed an online HAR system, which explored
WiFi ambient signals for RSSI fingerprint of different motions
[10]. Wigest leveraged changes in WiFi RSSI to sense in-air
hand gestures around the user’s mobile device [11]. However,
these approaches can only do coarse-grained HAR since RSSI
falls entirely in the time domain, while frequency features are
totally neglected. Suffering from performance degradation due
to the multipath effect is also a problem for RSSI-based systems
[15]. Thus, RSSI-based HAR systems are expressed as a green
octagon in Fig. 2.

C. CSI-Based Techniques

Compared with RSSI, CSI is a fine-grained value derived from
the physical layer of WiFi devices. In CSI-based systems, fea-
tures are descriptions of motion from different perspectives, i.e.,
time domain and frequency domain. Frog Eye proposed a novel
device-free crowd counting method based on CSI measurements
[15]. E-eyes presented location-oriented activity identification,
such as cooking and gaming [7]. WiShop analyzed shopper’s
behavior through WiFi signals [18]. WiFall-1 exploited the CSI
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special diversity to detect human fall in an indoor environment
and used the subcarrier fusion method for data dimension reduc-
tion [19]. Compared with WiFall-1, WiFall-2 used the subcarrier
fusion method with frequency as a weight indicator [9]. How-
ever, most existing works do not consider the effects of CCI, and
their experimental results are based on a non-CCI environment.
Moreover, the performance of these systems degrades due to
CCI. Thus, the traditional CSI-based methods are expressed
as a blue diamond in Fig. 2. To overcome these drawbacks,
we present WiAnti, a CSI-based HAR system that is robust to
CCI. This means the proposed system WiAnti satisfies all three
requirements.

III. PRELIMINARIES AND OBSERVATION

A. Overview of Channel State Information

In the frequency domain, the narrow-band flat-fading channel
with multiple transmit and receive antennas (MIMO) can be
modeled as [17]:

yi = Hixi + ni (1)

where i denotes the stream corresponding to the ith transmitter
and receiver antenna (Tx-Rx) pair, and xi, yi denote the trans-
mitted and received signal vectors, respectively. ni is the noise
vector, and Hi is the channel matrix.

Hi can be estimated at the receiver when a known sequence
is transmitted. As the IEEE 802.11n standard [16] is a protocol
based on OFDM technology, the 2.4 to 2.4835 GHz band is
divided into 14 channels, where each channel has 20M band-
width, and there are 56 subcarriers in each channel. Therefore,
the estimated value of Hi for N subcarriers can be represented
as:

Hi = [hi
(1),hi

(2), . . . ,hi
(k), . . .hi

(N)] (2)

Since human bodies and surrounding objects reflect radio
signals, a transmitted signal arrives at the receiver through
multiple paths. If a wireless signal (kth subcarrier in ith Tx-Rx
pair) arrives at the receiver throughΥ different paths,hi

(k)(ω, t)
can be given by the following equation [20], [21]:

hi
(k)(ω, t) = e−j·2πΔωt

Υ∑

γ=1

ϕγ(ω, t) · e−j·2πωτγ (t) (3)

where j is the imaginary unit, ω denotes the kth subcarrier
frequency, ϕγ(ω, t) denotes the complex-valued representation
of attenuation and initial phase offset of the γth path, and
e−j·2πωτγ (t) is the phase shift on the γth path which has a
propagation delay of τ

γ
(t). Besides, e−j·2πΔωt is the phase

shift caused by the subcarrier frequency difference between the
transmitter and the receiver.

According to [20]–[22], the length changes of a path result in
the phase change of the WiFi signal on the corresponding path.
In particular, Fig. 1 shows that the subcarrier signal is reflected
by the human body through the γth path. When the subject body
moves by a small distance between time 0 and time t, the γth

path length changes from ϑγ(0) to ϑγ(t). Since wireless signals
travel at light speed c, the delay τγ(t) of the γth path can be

Fig. 1. Multipath caused by human movements.

Fig. 2. Differentiating various approaches of device-free HAR systems.

expressed as τγ(t) = ϑγ(t)/c. Let λ represents the wavelength
of kth subcarrier, where λ = c/ω. Consequently, the phase shift
e−j·2πωτγ (t) on this path can be rewritten as e−j·2πϑγ(t)/λ, which
clearly means that if the path length changes by one wavelength,
the receiver experiences a phase shift of 2π in the corresponding
received subcarrier. Furthermore, human movements change the
phases of the different paths at the receiver and the number
of multipath. Therefore, the different paths are superimposed
according to the new phase relationship, which finally results in
the fluctuations of corresponding subcarrier amplitudes [23].

In experiments, the subcarrier frequency response is measured
by CSI collection tools [8], [24] and expressed as:

hi
(k) =

∣∣∣hi
(k)

∣∣∣ · e−j·θi(k)

k ∈ K (4)

where |hi
(k)| and θi

(k) are the amplitude and the phase of
the kth subcarrier in the ith Tx-Rx pair, respectively. K con-
tains the subcarrier indexes. Although the WiFi system has
56 subcarriers over a 20 MHz channel, different NICs using
distinct CSI collection tools [8], [24] can report the differ-
ent number of subcarriers. For instance, the Intel 5300 using
CSITOOL [8] can only report CSI for 30 of the 56 subcar-
riers, and the subcarrier index sequence K for Intel 5300 is
[−28,−26, . . . ,−2,−1, 1, 3, . . . , 27, 28]. To avoid misleading,
we use the dictionary structure of [key, value] to express the
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Fig. 3. Subcarriers overlap in adjacent channels.

relationship between the keyth subcarrier reported by the corre-
sponding CSI collection tool and the subcarrier value in the
IEEE 802.11n standard. In particular, value = K[key]. For
example, 15th (key = 15) subcarrier in CSITOOL represents
the subcarrier −1 (K[15] = −1) in the IEEE 802.11n standard.
In addition, unless otherwise specified, the experimental results
in this paper are based on CSITOOL.

B. Impact of CCI on CSI

CCI is mainly caused by the nodes with the overlapped fre-
quency spectrum competing for channels. According to the IEEE
802.11n standard [16], each channel contains 56 subcarriers in
the 20MHz bandwidth. As long as the subcarriers of a channel
used by one node overlap with the subcarriers of the channel used
by another node in a nearby place, the CCI occurs. For example,
Fig. 3 shows that there are spectrally-overlapped subcarriers
between channel 1 and channel 2 as marked in red. Thus, if
one node uses channel 1, and another node uses channel 2 in the
same area, the CCI occurs.

To ensure the accuracy of data transmission in each wireless
node, according to the IEEE 802.11n standard, a channel can
only be used by one node when it is idle [16]. However, when
CCI exists, the probability that the node senses an ongoing trans-
mission becomes larger, and the number of delays increases,
which results in a decrease in the received packet number
per unit time. Besides, to synchronize the data transmitted by
all subcarriers in one channel, all subcarriers in this channel
must transmit simultaneously, and a node can send packets
only when it detects that all the sub-channels of the working
channel are idle [25]. Thus, a node needs to compete for all
sub-channels in the working channel before sending packets. To
improve the ability of nodes competing for channels, a more
flexible subcarrier power allocation strategy is used in the WiFi
system [16]. Specifically, for each node, since the subcarriers
allocated more energy dominate channel competition [26] due
to the increasing probability of other nodes sense busy on the
corresponding sub-channels [27], the spectrally-overlapped sub-
carriers are allocated more power [28], [29]. On the contrary, less
power is allocated to the subcarriers in non-overlapping areas. In
this way, the ability of the node competing for the whole channel
in CCI is improved. However, the unbalanced subcarrier power
allocation strategy causes different power of subcarriers, which

Fig. 4. Point correlation matrix of CSI subcarriers. (a) Point correlation
without CCI. (b) Point correlation with CCI.

finally leads to the correlations across subcarriers weakened
[30].

Fig. 4 shows the heatmap comparison between the subcarrier
correlation matrices (empty room data) with and without CCI.
Each element in the matrices corresponds to the correlation
coefficient between two subcarriers’ amplitudes in one sample
point. Red and Blue represent the correlation coefficients of
1 and 0, respectively. Fig. 4(a) depicts the strong correlation
between 30 subcarriers without CCI. When the number of in-
terval subcarriers between two subcarriers is less than 14, the
correlation coefficients can go beyond 0.9. However, CCI has a
significant impact on the subcarrier correlation. Fig. 4(b) shows
the correlation between the 30 subcarriers with CCI, compared
with Fig. 4(a), the red covered area in Fig. 4(b) is a significantly
thinner line, which shows that CCI weakens the correlation
between subcarriers.

Unfortunately, most state-of-the-art systems such as WiShop
[18], WiFall-1 [19], and WiFall-2 [9] rely on the strong correla-
tion between subcarriers to perform data dimension reduction.
These methods use one or several fused subcarriers, which
are mean of all or some subcarrier amplitudes, to represent
all subcarrier characteristics. However, when CCI exists, the
correlation between subcarriers weakens. The fused subcarriers
are not suitable to describe all subcarrier characteristics since the
difference between various subcarriers is too significant. Thus,
the performance of most pioneer systems [9], [18], [19] degrades
due to CCI.

It is worth mentioning that, since the existence of Carrier
Sense Multiple Access with Collision Avoid (CSMA/CA) [16],
different nodes share the channel in a time-division manner [25],
[27]. Thus, the degraded performance (the influence of CCI) is
not caused by the direct collisions of the different WiFi signals.
Specifically, the degraded performance of pioneer WiFi-based
systems is caused by the loss of motion information during the
data dimension reduction (subcarrier fusion) due to the weak
subcarrier correlation. However, the data dimension reduction
is necessary to trade off the accuracy and the computational
complexity. Therefore, the influence of CCI on WiFi-based HAR
systems is inevitable.

IV. SYSTEM DESIGN AND METHODOLOGY

In this section, the activity set and the overall structure of the
WiAnti system are introduced.
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Fig. 5. The mean of the subcarrier CSI amplitude series for different activities
in the activity set.

A. Activity Set Overview

We define one reference state, i.e., the empty room, and four
regular motions, i.e., sitting, walking, standing, and running to
find the impact of CCI in different situations. The sketch of
each state or activity is shown in Fig. 5. A reference state of
the empty room is set to evaluate the CCI in the background
environment since we want to know how CCI affects the CSI
signals without the influence of human motion. Fig. 5 also shows
that the amplitude of CSI is a straight line with little variation
when there are no people in the room. However, the fluctuations
become significant when people are moving. Therefore, people’s
activities can be judged by the varying level of the CSI amplitude.

B. System Overview

As shown in Fig. 6, the workflow of the WiAnti system
contains four main parts: judgment of CCI, adaptive data prepro-
cessing, feature extraction, and classification part. The existence
and the change of CCI are judged in the first part. Next, according
to the judgment, different subcarrier processing strategies are
adopted in the second part. Specifically, in the scenario without
CCI, the data dimension is reduced by the usual subcarrier fusion
method. On the contrary, in constant CCI scenarios, the Pearson-
based subcarrier selection algorithm is used to improve the
RAR. Moreover, the DTW-based subcarrier selection algorithm
is adopted in varying CCI scenarios for further improvement of
similar activity RARs. Then, the features are extracted in the
third part. Finally, the activities are classified in the last part.

C. CCI Detection

Generally, CCI can be grouped into two categories: constant
CCI and varying CCI.

As for constant CCI, the subcarrier correlation changes slowly
due to fixed overlapped subcarriers and stable interference traffic
rates (ITRs). Thus, it is easy to measure the subcarrier correla-
tion. The local correlation features of sliding windows can well
represent the global correlation characteristics of all samples
due to the slowly changing subcarrier correlation. Based on the
analysis, a Pearson-based algorithm is proposed to select sub-
carriers in constant CCI scenarios. The Pearson-based subcarrier

selection algorithm tries to use the local correlation of sliding
windows to represent the global correlation of all samples,
which can measure subcarrier correlation effectively with low
complexity.

Varying CCI usually happens when routers perform channel
hopping or even when ITRs change. Different from constant
CCI, the subcarrier correlation changes rapidly with varying CCI
due to the change of overlapped subcarriers. Thus, the measure-
ment of subcarrier correlation becomes more complicated, and
the performance of the WiFi-based HAR system is limited. To
improve the stability and representative of selected subcarriers
and to further improve the RARs in varying CCI scenarios,
a DTW-based subcarrier selection algorithm is proposed that
can capture the global subcarrier correlation changes caused by
varying CCI.

Besides, to perform appropriate subcarrier processing meth-
ods in corresponding CCI scenarios, the existence and the
change of CCI need to be determined at first.

1) CCI Existence Detection: CCI is detected by recording
the number of received packets per unit time. As introduced
in Section III-B, in the scenario without CCI, the channel is
only occupied by one node. The node sends packets as usual,
and the number of received packets does not decrease per unit
time. However, in CCI scenarios, the probability that the node
senses an ongoing transmission becomes larger [27], and the
number of delays increases, which leads to a decrease in the
received packet number per unit time. Therefore, by recording
the number of received packets per unit time, the existence of
CCI is determined.

2) CCI Change Detection: Since spectrally-overlapped sub-
carriers and ITRs keep almost unchanged when CCI is constant,
the node sends packets with the same delays in different unit
time. Consequently, the fluctuation range of the received packet
number per unit time is small. However, the fluctuation range
becomes more significant when CCI is varying. Therefore, by
observing the fluctuation level of received packet number per
unit time, the state of CCI change can be judged. Specifically,
if the fluctuation of the received packet number per unit time is
within a threshold, the CCI is considered as unchanged in this
scenario. Here, the state of CCI changing or not in each unit time
is determined by using the following equations:

|Pm − Pm−1|
Pm−1

< σ, σ > 0 (5)

P =

m−1∑
i=s

Pi

m− 1 − s
,

∣∣Pm − P
∣∣

P
< ξ, ξ > 0 (6)

where Pm is the number of received packages in the mth

unit time, and σ and ξ are the thresholds corresponding to the
two equations, respectively. Eq. (5) limits that the fluctuation
between two adjacent unit time is less than a given threshold
σ. Furthermore, Eq. (6) is supplementary for Eq. (5), which
prevents the problem that the received packet number per unit
time deviating from the normal threshold ξ in a gradually
increasing or gradually decreasing manner, and still judged as
CCI unchanged. Specifically, the fluctuation between the current
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Fig. 6. WiAnti workflow.

unit (mth unit) and the average of the previous units (sth unit to
(m− 1)th unit in Eq. (6)), which are judged as CCI unchanged,
is limited within a given threshold ξ. If the received packet
number in mth unit time satisfies these two equations, the CCI
is regarded as unchanged in this unit.

D. Pearson-Based Subcarrier Selection Algorithm for
Constant CCI Scenarios

Since each action takes place in several seconds, a moment
(sample point) subcarrier correlation matrix (as shown in Fig. 4)
may not fully reflect the correlation change during the motion.
Compared with a single sample point, the sequence contains
more time-domain information because it includes all the sam-
pling points during the motion. Thus, the sequence correlation
calculation methods are more representative of the subcarrier
correlations during the movement.

As introduced in Section IV-C, WiAnti uses Pearson’s method
to calculate subcarrier sequence correlation in constant CCI
scenarios.

The Pearson correlation coefficient [31] defines the strength of
the correlation rq,w using the covariance and standard deviation
of two sequence variables (q and w):

rq,w =

∑l
i=1 (qi − q)(wi − w)√∑l

i=1 (qi − q)2
√∑l

i=1 (wi − w)2
(7)

where l is the length of sequence q and sequence w. q and w
are the means of sequences q and w, respectively. Specifically,
in each sliding window of motion samples, sequences q and
w represent the amplitude sequences of qth subcarrier and wth

subcarrier in this sliding window, respectively. Thus, rq,w repre-
sents the Pearson correlation coefficient between qth subcarrier

sequence and wth subcarrier sequence in the corresponding
sliding window.

In order to reduce the data dimension, most state-of-the-art
works [7], [9], [11], [18], [19] used one or several fused sub-
carriers which are mean of some or all subcarrier amplitudes
to represent the characteristics of all subcarriers. For instance,
Wishop [18] used one fused subcarrier, which is a mean of 30
subcarrier amplitudes, to describe the features of all subcarriers.
Besides, WiFall-1 [19] used six fused subcarriers to represent
the features of all subcarriers. Each fused subcarrier in WiFall-1
is the mean of five adjacent subcarrier amplitudes. Different
from WiFall-1, WiFall-2 [9] employed the subcarrier fusion
method with subcarrier center frequency as a weight indicator.
However, CCI makes these methods not as effective as they
perform in a non-CCI environment. This is because CCI weakens
the subcarrier correlation, and one can be represented by each
other only when the two subcarriers are very similar. Therefore,
it is unreasonable to represent all subcarrier characteristics with
the fused subcarriers generated by these algorithms, which may
perform unsatisfactorily due to CCI.

To better demonstrate that CCI weakens the subcarrier cor-
relation, Fig. 7 depicts the heatmap comparison between the
subcarrier sequence correlation matrices with and without CCI.
Each element in the matrices corresponds to the correlation
coefficient between two subcarrier amplitude sequences in one
sliding window, and the sliding window data collected from
the empty room to observe the impact of CCI on subcarrier
correlation without motion effect. As shown in Fig. 7(a), the
correlation between any two subcarrier sequences without CCI
is strong, and the mean of its correlation coefficients calculated
by Pearson’s method can reach 0.85. Under such circumstances,
it is reasonable to use the fused subcarrier features to represent
the features of other subcarriers.
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Fig. 7. Correlation matrix of subcarrier time sequences. (a) Sequence corre-
lation without CCI. (b) Sequence correlation with CCI.

However, Fig. 7(b) depicts that the sequence correlation
coefficients between any two subcarriers rarely reach 0.3 in
the constant CCI scenario. Thus, it is unreasonable to use the
subcarrier fusion algorithms [9], [18], [19] to perform the data
dimension reduction due to the significant difference across
distinct subcarriers.

Compared with the fusion algorithms [9], [18], [19], the
subcarrier selection algorithms are more effective. Specifically,
by selecting several weakly correlated subcarriers without sub-
carrier fusion to represent all subcarrier characteristics, the
motion features can be retained at the maximum level with low
complexity. This is because that weakly correlated subcarriers
contain more information than the same number of strongly
correlated subcarriers. According to information theory [32],
the joint entropy can directly represent the amount of total
information combined by two events. In particular, the joint
entropy of two subcarrier sequences can be expressed as:

E(q,w) = E(q) + E(w)− ψ(q;w) (8)

where q,w are different subcarrier sequences. E(q) and E(w)
are the entropy of subcarrier sequences q and w, respectively.
E(q,w) represents the joint entropy of subcarrier sequence q
and subcarrier sequence w. The mutual information ψ(q;w) is
positively related to Pearson’s correlation coefficient rq,w. Since
E(q) and E(w) are invariant for given subcarrier sequences
q and w, the stronger correlation between the two subcarriers
q, w, the bigger number of mutual information ψ(q;w), and
the less information E(q,w) is contained.

Based on the above analysis, a Pearson-based dynamic sub-
carrier selection algorithm is employed in WiAnti to deal with
constant CCI. The key idea of the Pearson-based algorithm is
to select several weakly correlated subcarriers and not to fuse
them. By using the features of the chosen subcarriers to represent
all subcarrier characteristics, the data dimension is reduced with
less information loss.

Three steps are included in the Pearson-based subcarrier
selection algorithm:

Step 1: To maintain more motion information, the subcarrier
combination with the weakest correlation in each sliding window
of samples needs to be determined at first. Specifically, the
inter-subcarrier correlation coefficients of f th sliding window
are calculated by Pearson’s method to generate the correlation
matrix Rf . The element rq,w in Rf represents the coefficient

of sequence correlation between the subcarrier sequence q and
the subcarrier sequence w. Then, all elements in the matrix Rf

are sorted in an ascending order to generate a new array If .
Next, we choose the two subcarriers (a and b) with the minimum
correlation coefficient value in array If to form the subcarrier
combination Cf . Subcarriers are gradually added to the subcar-
rier combination Cf according to the weakest total correlation
until the number of subcarriers in Cf reaches the given value
o (the expected number of selected subcarriers). Similarly, we
perform the same operation for all sliding windows. Thus, the
subcarrier combinations of each sliding window are determined.

Step 2: To find a suitable subcarrier combination for all
samples, step 2 is the effective screening of all subcarrier com-
binations. According to the principle of minority subordinat-
ing to the majority, the most frequently occurring subcarrier
combination (the mode combination Ctmp) in all subcarrier
combinations is chosen as the output of step 2. Thus, the global
correlation characteristics of all samples are expressed by the
local correlation features of sliding windows.

Step 3: Finally, as introduced in Section III-A, the farther
interval between two subcarrier indexes causes the larger differ-
ence between subcarrier frequency ω, which finally leads to the
more significant difference between these two subcarrier phase
changes caused by the same motion. Thus, to balance the impact
of the subcarrier phase change difference and the subcarrier
correlation, the frequency spatial constraint of subcarriers is
added in WiAnti algorithms. Specifically, subcarriers in the final
chosen subcarrier combination Cs should be selected from all
three subcarrier intervals, i.e., [0, 10), [10, 20), and [20,30]. If
the output subcarrier combination of step 2Ctmp does not satisfy
this condition, the second most frequently occurring subcarrier
combination is chosen. Similarly, if the second most frequently
occurring subcarrier combination does not satisfy the condition,
the third most frequently occurring subcarrier combination is
chosen, and so on.

Algorithm 1 illustrates an algorithmic specification of the
proposed Pearson-based subcarrier selection algorithm.

E. DTW-Based Subcarrier Selection Algorithm for Varying
CCI Scenarios

The Pearson-based algorithm is particularly useful in constant
CCI scenarios. Unfortunately, when CCI is varying, due to the
unstable CSI collection tools [8], [24], the CSI of different
subcarrier sequences appears more outlier values (exception
values and zero values). To better reconstruct the real subcarrier
sequences, we should better eliminate these outlier values ac-
cordingly. However, since these outlier values appear randomly
in different subcarrier sequences, the numbers of outliers in
different sequences are distinct, which results in the length
difference between distinct subcarrier sequences after eliminat-
ing these outlier values. Unfortunately, the Pearson correlation
calculation method can only measure the correlation between
two equal-length sequences. Therefore, the Pearson correla-
tion calculation method is unsuitable for CSI in varying CCI
scenarios. Besides, the subcarrier correlation changes rapidly
across different sliding windows due to the varying overlapped
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Algorithm 1: Pearson-based Subcarrier Selection
Algorithm.

Input: CSI streams (3 × 3), the length of each stream is
L.

Output: The selected subcarrier combination Cs, which
contain o subcarriers.

1: Initialize: The CSI stream is partitioned according to
the sliding window size cw. Since there are 9 streams,
the total number of sliding windows is U = 9 × ⌊

L
cw

⌋
.

Initialize B as an empty dictionary.
2: for f <= U , where f represents the f th sliding

window do
3: Rf =: the correlation matrix generated by

calculating inter-subcarrier correlation coefficients
according to Pearson’s method.

4: If := the array generated by the arrangement of the
elements in the matrix Rf from the smallest to
largest order.

5: According to Rf (a, b) = min(If ), selecting two
subcarriers with the weakest correlation (a and b). At
this point Cf = {a, b}.

6: while |Cf | <= o do

7: new =: arg minnew{
∑|Cf |

i=1 rnew,Cf (i)}.
8: Cf =: Cf ∪ new.
9: end while

10: if Cf in B then
11: B[Cf ] = B[Cf ] + 1. // The key of the dictionary

is the subcarrier combination, and the key value is
the corresponding number of occurrences.

12: else
13: B[Cf ] = 1.
14: end if
15: f := f + 1.
16: end for
17: while B �= ∅ do
18: Ctmp := arg maxCw

{B[Cw]}.
19: if Ctmp ∩ [0, 10) �= ∅ and Ctmp ∩ [10, 20) �= ∅ and

Ctmp ∩ [20, 30] �= ∅ then
20: Cs := Ctmp.
21: break.
22: else
23: del B[Ctmp].
24: end if
25: end while
26: return Cs.

subcarriers. The subcarrier combination selected by a single
sliding window (the local correlation characteristics) cannot
represent the correlation characteristics of all samples (the global
correlation characteristics) well. Moreover, the final selected
subcarrier combination Cs voted by all sliding windows is not
prominent and not representative due to the significant difference
between the various subcarrier combinations generated from
different sliding windows. Therefore, an algorithm, which can
measure the subcarrier correlation more accurately and precisely

capture the correlation changes between different sliding win-
dows, is needed to select representative subcarriers in varying
CCI scenarios.

To deal with the above problems, a DTW-based algorithm
is proposed to select the subcarriers in varying CCI scenarios.
Different from the Pearson-based algorithm, the DTW-based
algorithm employs DTW to calculate the subcarrier correlation
since DTW can calculate the correlation between two subcarrier
sequences with different lengths and is a more precise mea-
surement of sequence correlation (the computational complexity
of DTW increases accordingly). Furthermore, the DTW-based
algorithm does not select subcarriers in each sliding window, but
select subcarriers from the overall subcarrier correlation matrix
which generated by adding subcarrier correlation matrices of
all sliding windows. Thus, the DTW-based algorithm can better
evaluate the subcarrier correlation changes in detail.

Specifically, the DTW-based subcarrier selection algorithm
includes four steps, i.e., subcarrier sequence correlation calcu-
lation, generation of correlation coefficient matrix, subcarrier
selection, and frequency spatial considerations.

1) Subcarrier Sequence Correlation Calculation: Since the
correlation measurement of the subcarrier sequence is the key
to select subcarriers, we start a brief introduction of DTW as
follow:

DTW is used for measuring the similarity between two time
sequences [33], which may vary in time or speed, and the
principle of DTW is to compare two dynamic patterns and
measure their similarity by calculating a minimum distance
between them. Suppose we have two time sequences V and
G, which have the length of α and β respectively, where:

V = {v1, v2, . . . , vi, . . . , vα} (9)

G = {g1, g2, . . . , gk, . . . , gβ} (10)

To align the two sequences using DTW, an α× β matrix is
constructed at first, where the (ith, kth) element of the matrix
contains the distance d(ti, gk) between the two points vi and gk.
Next, the absolute distance between the values of two sequences
is calculated using the Euclidean distance.

d(vi, gk) = (vi − gk)
2 (11)

Each element of the matrix (i, k) corresponds to the alignment
between the points vi and gk. Finally, the accumulated distance
is measured by:

D(i, k) = min[D(i− 1, k − 1), D(i− 1, k), D(i, k − 1)]

+ d(i, k) (12)

The DTW distance D(α, β) obtained by the above formula
can represent the correlation of two sequences (V andG). Thus,
we use the DTW distance to measure the correlation between
subcarrier sequences in all sliding windows.

2) Generation of Correlation Coefficient Matrix: Since a
longer DTW distance means a smaller correlation coefficient
between two subcarriers, the correlation matrix of the f th sliding
window can be generated by calculating the DTW distances
between different subcarriers. Specifically, for each of the two
subcarrier sequences in the f th sliding window, we calculate the
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TABLE I
EXPLANATION FOR EXTRACTED FEATURES

DTW distance to represent the correlation coefficient between
these two subcarriers. Then, the correlation matrixDistf of the
f th sliding window is generated, and the element Distf (q,w)
in Distf represents the DTW distance between the subcar-
rier sequence q and the subcarrier sequence w. Similarly, the
same operation is performed for each sliding window. Thus,
the correlation coefficient matrices for all sliding windows are
generated.

To prevent a too large or too small weight of a sliding window
in the whole samples, and prevent outliers and extreme values.
The correlation matrices Dist in each sliding window need to
be normalized. The normalization formula is expressed as:

Distnor(q,w) =
Dist(q,w)−min(Dist)

max(Dist)−min(Dist)
(13)

where Dist is the correlation matrix of the sliding window, and
max(Dist) and min(Dist) are the maximum and minimum
values of the matrixDist, respectively.Distnor is a normalized
correlation matrix in the same sliding window.

After the normalization of each sliding window correlation
matrix, the DTW-based algorithm selects subcarriers from the
total subcarrier correlation matrix Distnor_total generated by
adding normalized correlation matrices Distnor of all sliding
windows.

3) Subcarrier Selection: After getting the total correlation
matrix Distnor_total, the two subcarriers with the weakest
correlation are chosen from matrix Distnor_total to form
the subcarrier combination Ctmp at first. Then, subcarriers are
gradually added to the subcarrier combination Ctmp according
to the weakest total correlation (the longest total DTW distance)
until the number of subcarriers inCtmp reaches the given value o
(the expected number of selected subcarriers). Thus, the output
subcarrier combination of this step Ctmp is determined.

4) Frequency Spatial Considerations: Similarly, the subcar-
riers inCtmp should also satisfy the frequency spatial constraint
and be selected from all three intervals, which are [0, 10), [10,
20), and [20, 30]. IfCtmp does not satisfy this constraint, the sec-
ond weakest correlated subcarrier combination is chosen as the
final selected subcarrier combination Cs. Besides, if the second
weakest correlated subcarrier combination does not satisfy the
condition, the third weakest correlated subcarrier combination
is chosen, and so on.

F. Data Preprocessing, Feature Extraction, and Classification

Data preprocessing achieves the glitch filtering of raw signals
and the segmentation of motion samples. Two steps are included

Fig. 8. Evaluation scenarios in a conference room. (a) The schematic diagram.
(b) Experimental setting.

in this part. Firstly, the weighted moving average [34] is used
to smooth the CSI signals. Secondly, the sliding windows over
data streams are used to segment the motion samples.

According to the features list in Table I, we extract 10 statistic
features from both time and frequency domain, which are widely
used in CSI-based HAR systems [7]–[9], [11], [18], [19].

To evaluate the performance with different classifiers, six
classical classification methods are used to recognize activities,
which are the Random Forest (RF), the Decision Tree (DT), the
Decision Tree Regression (DR), the k-NearestNeighbor (kNN),
the Logistic Regression (LR) and the Linear Discriminant Anal-
ysis (LDA).

V. EXPERIMENTAL EVALUATION

This section illustrates the implementation and experimental
evaluation of WiAnti. Firstly, experimental settings are intro-
duced. Then, the CCI assessment is presented. Next, the perfor-
mance of WiAnti-Pearson and other pioneer algorithms in the
same constant CCI scenario is given. Besides, the performance
of WiAnti-DTW and other algorithms in the same scenario
with varying CCI is presented. Finally, the impact of various
factors on each algorithm performance is demonstrated through
experiments.

A. Implementation

As shown in Fig. 8, the experiment is conducted in a
6.1 m × 4 m room, which contains a table and chairs for daily
use. The distance between point 1 and point 2 is 3 m. The
distance between laptop C and laptop D is 30 cm. Router A
and laptop C are placed in opposite positions. To verify the
robustness of our algorithms to the CSI collection NICs, we
choose two NICs, i.e., Intel 5300 NIC [8] and Atheros 9580
NIC [24] for CSI data collection. Table II shows the specific
settings for different equipment in Fig. 8. The model of laptops
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TABLE II
SPECIFIC SETTINGS FOR DIFFERENT CSI COLLECTION NICS

is Thinkpad 420i, and the operating system is Ubuntu 14.04
with Linux Kernel 4.1.10. Each laptop (including interference
laptops for a fair comparison) is equipped with three 8dBi
external antennas to better signal reception. The model of routers
is TL-WDR7500V3.0, which contains three 2.4GHz transmit
antennas with 5dBi antenna gain.

To measure the impact of constant CCI and varying CCI
on CSI, a comparison experiment which includes the scenar-
ios without CCI, with constant CCI, and with varying CCI is
performed.

1) Implementation of Non-CCI Scenario: In the scenario
without CCI, the access point (AP) A is set to channel 1 and
forms a wireless link with the laptop C. AP B and laptop D are
powered off. Since the activities such as lifting legs and closing
legs during walking or running happen in a few seconds, the
beacon rate of the recognition AP A is set to 100 packets per
second to capture the signal components affect by these short
time activities. Besides, the packet length of AP A is set to the
default 64 bytes.

2) Implementation of Constant CCI Scenario: In the con-
stant CCI scenario, AP B is powered on and set to channel 3.
The difference of center frequency between channel 3 and chan-
nel 1 is 10MHz, and the number of the spectrally-overlapped
subcarriers occupies half of all subcarriers. Moreover, Laptop D
is powered on and connected to AP B to form a wireless link,
and the beacon rate of AP B is set to 100 packets per second. In
addition, the packet length of AP B is set to 25000 bytes. Thus,
the amount of data generated by interference AP B is about
2.5 Mbytes per second.

3) Implementation of Varying CCI Scenario: In the varying
CCI scenario, the interference AP B is adjusted from channels
1 to 5 to produce a varying CCI environment since only the
channels 1 to 5 overlap with the channel of the recognition AP
A which is set to channel 1.

We perform the comparison experiment on six participants in
all of the non-CCI scenario, the constant CCI scenario, and the
varying CCI scenario. We also design four different actions, i.e.,
standing at point 1, walking between point 1 and point 2, running
between point 1 and point 2 and sitting at point 1, and a reference
state, i.e., the empty room. Each action or state is repeated 54
times for one participant. Thus, a total of 3 × 6 × 5 × 54 activity
samples is collected for training and testing.

B. CCI Assessment

By recording the number of received packets per unit time,
the existence and the change of CCI are judged. The impact
of subcarrier spectrally-overlap on packet reception is demon-
strated by experiments. The data is collected from the constant
CCI scenario introduced in Section V-A2, and the channel of
interference AP B is changed from 1 to 13.

Fig. 9. The number of received packets in six minutes.

Fig. 9 shows the number of packets received by laptop C in
six minutes as the channel of interference AP B varies. Each
experiment is repeated ten times, taking the average as the num-
ber of received packets per unit time. When the channel of the
recognition AP A is channel 6, the number of received packets
per unit time first decreases rapidly, then rises quickly and finally
stabilizes. This is because more overlapped subcarriers caused
by the approaching interference channel lead to more severe
CCI, which results in the decrease of received packet numbers
per unit time. Otherwise, the number of received packets per unit
time becomes stable when there are no overlapped subcarriers.
Similar results are obtained when we set the recognition AP A
to channel 1 and channel 9, respectively.

Built upon the above analysis, by recording the number of
received packets per unit time and the sampling frequency, the
existence and the change of CCI can be determined. Specifically,
the state of the CCI change is judged by Eq. (5) and Eq. (6)
as introduced in Section IV-C2. Besides, based on empirical
knowledge, the threshold σ in Eq. (5) is set to 0.1 and the
threshold ξ in Eq. (6) is set to 0.07.

C. WiAnti’s Accuracy

1) Baseline Methods: We compare our subcarrier selection
algorithms with two state-of-the-art subcarrier fusion algorithms
used by WiFall-1 [19] and WiFall-2 [9]. These two algorithms
are widely used in CSI signal data dimension reduction and
proved to be effective with less information loss [35]. For a
fair comparison with our algorithms, we use the same filtering
method to smooth the same original signals, the same sliding
window size to realize data segmentation, extract the same
features, and use the same classifiers to perform activity clas-
sification. Furthermore, the number of selected subcarriers o in
our algorithms (except for the algorithm applied to non-CCI
scenarios) and all baseline approaches is set to 6 for a fair
comparison.

2) Constant CCI Deployments: A Python module Scikit-
learn [36] as the machine learning library is adopted to quickly
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Fig. 10. Comparison of the different algorithm performance, CSI collection tool: CSITOOL. (a) Comparison of different system RARs in the constant CCI
scenario under various classifiers. (b) Comparison of different system RARs in the varying CCI scenario under various classifiers. (c) Comparison of various
algorithm recognition time for a single motion sample.

implement RF, DT, DR, kNN, LR, and LDA. To avoid overfit-
ting, 10-fold cross-validation is used to train these classifiers.
The RAR used in this paper is defined as the ratio of the
number of correctly classified activities εcorrect to the number
of the whole testing activities εwhole, which can be expressed as
follows:

RAR =
εcorrect
εwhole

× 100% (14)

Fig. 10(a) shows the RARs of WiAnti algorithms compared
with other methods by various classifiers, and WiAnti-Pearson
selects 1st, 6th, 16th, 23rd, 29th, 30th subcarriers in the constant
CCI scenario. As reference states of the non-CCI environment
(only recognition AP signals can be detected as introduced in
Section V-A1), WiFall-Clean and WiAnti-Clean represent the
RARs of WiFall-1 and WiAnti (WiAnti uses the subcarrier
fusion algorithm as introduced in Fig. 6) in the scenario without
CCI, respectively. Besides, the rest of the experiments are per-
formed in the same constant CCI scenario. From Fig. 10(a), we
can observe that the proposed WiAnti-Pearson can achieve better
performance compared with the baselines in all cases. By six
different classifiers testing, WiAnti-Pearson achieves a 95.165%
RAR on average, and the RF classifier can obtain the highest
RAR of 98.09%. Compared with the WiFall-2, WiAnti-Pearson
gets a 13.675% higher RAR in the constant CCI scenario. For
the reference state of the non-CCI environment, the performance
of WiFall-1 (represented by the WiFall-Clean) has a significant
improvement compared with the same algorithm in the constant
CCI scenario. This means that the performance of the pioneer
subcarrier fusion algorithm is indeed affected by CCI. Although
only one subcarrier data are used, WiAnti-Clean achieves similar
performance with WiFall-Clean, and the RAR is enough for
WiAnti to classify activity accurately due to the strong sub-
carrier correlation in the non-CCI environment. Furthermore,
WiAnti-Pearson applied in the constant CCI scenario, gets a
3.89% higher RAR than WiFall-Clean, which clearly means by
considering the correlation effect in the process of subcarrier
selection, the Pearson-based approach is suitable for the task of
HAR with WiFi signals when the CCI exists.

Then, two confusion matrices using NN as a classifier are
illustrated to demonstrate the robustness of the algorithms to
similar actions in the constant CCI scenario. The similar mo-
tions for our system are walking and running. The horizontal

Fig. 11. Confusion matrix for different systems. (a) WiAnti-Pearson uses NN.
(b) WiFall-2 uses NN.

coordinates of Fig. 11 represent the type of predicted actions,
and the vertical coordinates represent the actual type of actions.
The indexes 1 to 5 represent the empty room, running, sitting,
standing, and walking, respectively. From Fig. 11(a), we can
observe that WiAnti-Pearson is capable of recognizing similar
activities with a low error rate in the constant CCI scenario. Com-
pared with the confusion matrix of WiFall-2 shown in Fig. 11(b),
WiAnti-Pearson can classify normal actions, i.e., empty rooms,
sitting, standing, with high RARs close to 100%. Furthermore,
WiAnti-Pearson achieves a 93% RAR of the similar activities,
i.e., walking and running. In contrast, Fig. 11(b) depicts that
WiFall-2 achieves high RARs of normal activities. However,
CCI has quite a significant impact on similar activity RARs.
Thus, compared with the WiFall-2, WiAnti-Pearson is more
robust to the similar action classification in the constant CCI
scenario.

3) Varying CCI Deployments: We also examine the per-
formance of different algorithms in the scenario with
varying CCI. Specifically, WiAnti-Pearson and WiAnti-
DTW choose 2nd, 6th, 16th, 21st, 26th, 28th subcarriers and
1st, 6th, 14th, 16th, 26th, 29th subcarriers in the varying CCI
scenario, respectively. Fig. 10(b) shows the experimental results
of different algorithms in the varying CCI scenario. We observe
that the proposed WiAnti algorithms consistently outperform
WiFall-1 and WiFall-2 in terms of RAR. Since the varying
CCI environment for each algorithm is consistent, a higher
RAR means a better ability to maintain motion information.
Among WiAnti algorithms, the proposed DTW-based subcarrier
selection algorithm can achieve the best performance, reaching
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TABLE III
RESULTS FOR WIANTI-DTW

a 94.125% RAR on average. By using DTW to measure the cor-
relation between subcarriers, the WiAnti-DTW can significantly
increase the representation of selected subcarriers. Moreover, by
effective integration of all sling window correlations, WiAnti-
DTW can minimize the loss of information under CCI and is
suitable for the task of HAR under CCI environment even when
the CCI is varying.

To further evaluate the performance of different algorithms
in the varying CCI scenario, the comparison tables of the RAR,
the recall rate, and the F1 score for WiAnti-DTW and WiFall-2
are presented. The classifier used by the two algorithms is LR.
Table III shows that WiAnti-DTW can classify not only all
motions with high RARs but also achieves high recall rates
and F1 scores. Moreover, Wianti-DTW achieves a 98% similar
activity RAR on average with a high recall rate reaching 99%.
Therefore, WiAnti-DTW is suitable and reliable for similar
action classification in the scenario with varying CCI.

4) Recognition Speed: Fig. 10(c) depicts the recognition
time of a single motion sample for different algorithms, includ-
ing the time of signal processing, feature extraction, and classifi-
cation. Since only one subcarrier is used, WiAnti-Clean realizes
6× faster on average than WiFall algorithms, and the RAR of
WiAnti-Clean is satisfactory in the non-CCI scenario due to the
strong correlation between subcarriers. Although the recognition
time of WiAnti-Pearson and WiAnti-DTW is longer than that of
WiFall algorithms, the improvement of recognition performance
in CCI scenarios is significant. Moreover, since the motions
usually last several seconds, the increased extra time (0.3s on
average) of WiAnti algorithms for HAR systems is tolerable.

D. Deep Dive Into WiAnti

The primary purpose of this section is to understand the impact
of various factors on different algorithm performance. The RAR
of this part is the average RAR of the six classifiers. Similar to
the implementation of the varying CCI scenario as introduced in
Section V-A3, the experiment data of each setting value under
one factor is collected from 6 participants. For every participant,
each action or state is repeated 54 times for each setting value
under one factor.

1) Impact of Interference Traffic Rate: In this section, we
study the effect of ITR on classification performance. We keep
one interference AP (AP B in Fig. 8) and adjust ping rates and
packet lengths of the interferer. The combinations of ping rates
and packet lengths are 100 packets per second with 1000-bit
packet length (average transmission rate 0.1 Mbit/s), 200 packets
per second with 5000-bit packet length (average transmission
rate 1 Mbit/s), 100 packets per second with 25000-bit packet

TABLE IV
RESULTS FOR WIFALL-2

length (average transmission rate 2.5 Mbit/s), 200 packets per
second with 25000-bit packet length (average transmission rate
5 Mbit/s), and 400 packets per second with 20000-bit packet
length (average transmission rate 8 Mbit/s). These settings
roughly correspond to the bit rates of watching online videos
with the frame rates 360p, 480p, and 1080p, which give rise to
the bit rates of 1 Mbit/s, 5 Mbit/s, and 8 Mbit/s, respectively. The
recognition AP A and the interference AP B are set to channel
1 and channel 3, respectively.

Fig. 12(a) shows the classification performance under dif-
ferent ITRs. WiAnti-Pearson reaches a 93.78% RAR when the
ITR is 8 Mbit/s, which means it is robust to the interference
generated by people watching the 1080p video. Furthermore, as
the interference intensity increases, the RAR of WiAnti-Pearson
decreases slowly. Since the subcarrier correlation is considered
in the process of selecting subcarriers, WiAnti-Pearson can
select the subcarriers which contain more motion information
when all the subcarrier correlations are weakened caused by the
increasing ITR. In contrast, since there is no anti-interference
design, the RARs of WiFall algorithms drop rapidly as the ITR
increases. Moreover, the RARs of both WiFall-1 and WiFall-2
are no more than 76%when the ITR is high (8 Mbit/s). Therefore,
WiAnti-Pearson is more robust to the increasing ITR and can
maintain stability when the ITR is pretty high.

2) Impact of Interference Source Number: To evaluate the
impact of the interference source number on classification, we
vary the number of interference routers from zero to three.
As shown in Fig. 13, we consider four cases: no interference
(NONE), one interference AP (AP B), two interference AP (AP
B and AP E), and three interference AP (AP B, AP E, and AP F).
The recognition AP is set to channel 1, and all interference APs
are set to channel 3. The interference laptops also communicate
with the corresponding interference APs using the echo request
ping command with 100 packets per second ping rate and the
10000-bit packet length (transmission rate 1 Mbit/s).

From Fig. 12(b), compared with two baselines, we can ob-
serve that the proposed algorithm WiAnti-Pearson can achieve
better performance in different numbers of interference sources.
Moreover, the RAR of WiAnti-Pearson drops slowly with the
increasing of the interference sources. On the contrary, the RARs
of both WiFall-1 and WiFall-2 drop quickly with the increasing
of the interference sources. This is because the WiAnti-Pearson
can dynamically select suitable subcarriers to cope with the
weakened subcarrier correlation caused by the increasing in-
terference sources and maintain more motion information. This
also demonstrates that WiAnti-Pearson is more robust to the
increasing of the interference sources.
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Fig. 12. The impact of various factors on different algorithms. CSI collection tool except (f): CSITOOL. (a) The performance under different interference traffic
rates (ITRs). (b) The performance influenced by the number of interference routers. (c) The performance influenced by the size of the sliding window. (d) The
performance under different transmitter sending rates. (e) The performance influenced by the number of antennas. (f) The performance influenced by the CSI
collection NICs. (g) The performance influenced by the non-line-of-sight (NLOS). LOS: line-of-sight. (h) The performance influenced by the subcarrier frequency
spatial constraint. (i) The performance influenced by the power of NIC.

Fig. 13. The location diagram of different interference APs. (a) The schematic
diagram. (b) Experimental setting.

3) Impact of Activity Window Size: The activity window size
directly affects the accuracy of HAR. Too large window size
makes the computational complexity of HAR increase. On the
contrary, a too-small window cannot contain all the motion
information, and the classification accuracy rate of behavior is
reduced accordingly. In order to find the best activity window
size, the impact of the window size cw on different algorithm
performance is presented. We set cw from 100 to 700, which
corresponds to the time difference of 1s to 7s. The experimental

data is collected in the scenario with varying CCI introduced in
Section V-A3.

Fig. 12(c) depicts that the size of the sliding window has a sig-
nificant effect on different alforithm RARs. For all algorithms,
the performance increases with a larger window size when cw
is less than 500 and has a significant drop when cw is large than
500. This is because the 5-second sliding window contains all the
motion information, and the shorter sliding window contains less
motion information. However, a too-long sliding window cannot
guarantee the smoothness of the CSI signals, and the saliency
of the motion characteristics can also be affected. Thus, in all
the evaluations, we choose 500 as the window size. Regardless
of the size of the sliding window, the proposed WiAnti-DTW
algorithm can achieve the best performance due to the fact that
it can choose the right subcarriers to maximize the contained
motion information.

4) Impact of Transmitter Sending Rate: To further evaluate
the influence of transmitter sending rate on RARs, we set
the four transmitter sending rates of 100 packets/second, 350
packets/second, 600 packets/second, and 850 packets/second.
Similarly, the experimental data is collected in the varying CCI
scenario introduced in Section V-A3.
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Fig. 14. The location diagram of different NLOS paths. (a) The schematic
diagram. (b) Experimental setting.

From Fig. 12(d), for all algorithms, we observe that the RARs
rise with the increasing of the transmitter sending rates and then
decrease. This is because setting a higher ping frequency leads
to a higher transmitter sending rate of CSI, which ensures that
the time resolution of the CSIs is high enough for capturing the
maximum details of different types of activities. However, the
tool [8] we use to collect CSI signals is not stable at high trans-
mitter sending rates. Thus, the RARs of each algorithm have a
slowly decrease when the transmitter sending rate is higher than
600 packets/second. Furthermore, under different transmitter
sending rates, the proposed WiAnti-DTW algorithm can always
achieve the best performance in the varying CCI scenario.

5) Impact of Antenna Number: In MIMO systems, the num-
ber of antennas determines the quality of the signals. To evaluate
the influence of antenna numbers on HAR performance, we
set up a comparison experiment with three different antenna
numbers. Besides, the experimental data of this part is collected
in the scenario with varying CCI introduced in Section V-A3.

Fig. 12(e) demonstrates that more antennas at the receiver
side can increase the RARs. This is because the use of multiple
antennas provides extra diversity gains, especially in the lower
CSI strength. As shown in Fig. 12(e), although only one received
antenna data are used, the proposed WiAnti-DTW achieves an
88.35% RAR on average. This means WiAnti-DTW is robust
to the small number of antennas, and the data from one antenna
are enough for WiAnti-DTW to achieve satisfactory recognition
performance in the scenario with varying CCI. Furthermore,
more antennas make better performance.

6) Impact of CSI Collection NICs: To test the robustness of
WiAnti algorithms under different CSI collection devices, as
introduced in Section V-A, we also employ Atheros 9580 NIC
using Atheros-CSI-TOOL [24] to collect CSIs in the constant
and varying CCI scenarios, respectively. Fig. 12(f) depicts the
impact of different CSI NICs on WiAnti performance, and we
can observe that the performance of our algorithms based on
distinct NIC devices is similar and satisfactory in different CCI
scenarios, which clearly illustrates that our algorithms are robust
to different devices and the WiAnti system does not depend on
a specific device platform for implementation.

7) Impact of NLOS Paths: To evaluate the impact of NLOS
caused by walls and locations, as shown in Fig. 14, we change
the position of the recognition AP A and the recognition laptop
C and repeat the various motions on two NLOS paths accord-
ingly. The experiment is conducted in the varying CCI scenario.

Fig. 12(g) shows the performance of various algorithms under
different NLOS path impact. We can observe that NLOS paths
downgrade the performance of each algorithm, and the negative
effect is more significant for the path (NLOS-1), which is farther
away from the recognition AP. Nevertheless, WiAnti-DTW can
always achieve the best performance in all paths. Since more
motion information is maintained due to the valid subcarrier
selection algorithms, WiAnti is more robust to different NLOS
paths and positions.

8) Impact of Frequency Spatial Constraint: To test the im-
pact of the frequency spatial constraint on WiAnti algorithm
performance in various CCI scenarios, the RARs of WiAnti al-
gorithms with and without this constraint are given in Fig. 12(h).
Fig. 12(h) depicts that the frequency spatial constraint can effec-
tively improve the WiAnti algorithm RARs in most cases due to
the consideration of subcarrier frequency responses. In particu-
lar, if the selected subcarrier combination initially satisfies the
frequency spatial characteristic constraint, i.e., WiAnti-DTW in
the varying CCI scenario, the RAR will not be affected by this
constraint.

9) Impact of NIC Power: To further evaluate the influence of
signal-noise ratio (SNR) on various algorithm performance, we
adjust the NIC power of recognition laptop C from 10 dBm
to 15 dBm (adjustable range for Intel 5300 NIC in Ubuntu
14.04). The experiment is conducted in the varying CCI scenario.
As shown in Fig. 12(i), all algorithm RARs downgrade as the
NIC power decreases. However, since more motion information
is maintained by the effective subcarrier selection, WiAnti al-
gorithm RARs decrease slowly compared with baselines, and
WiAnti-DTW can achieve the best performance in all cases.
Moreover, when the NIC power is lower than 11 dBm, the
baselines no longer recognize motion accurately, but WiAnti
works relatively well. Thus, compared with baselines, WiAnti
is more robust to the low transmit NIC power. Furthermore,
higher NIC power makes better recognition performance.

VI. CONCLUSION

In this paper, we propose an anti-interference CSI-based HAR
system WiAnti. The core of WiAnti is two dynamic subcarrier
selection algorithms, which are WiAnti-Pearson and WiAnti-
DTW. Especially, by dynamic selecting weakly correlated sub-
carriers without fusion in CCI scenarios, the proposed algo-
rithms can maintain motion information at the maximum level
during the data dimension reduction. Extensive experiments
have been performed in different CCI scenarios. Compared
with the state-of-the-art baseline algorithms, WiAnti-Pearson
can improve the recognition performance by 14% on average in
the constant CCI scenario, and WiAnti-DTW achieves an 8%
higher RAR on average in the scenario with varying CCI.
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