
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 1

FINCH: Enhancing Federated Learning with
Hierarchical Neural Architecture Search

Jianchun Liu, Member, IEEE,ACM, Jiaming Yan, Hongli Xu, Member, IEEE, Zhiyuan Wang, Jinyang
Huang, Yang Xu, Member, IEEE,

Abstract—Federated learning (FL) has been widely adopted to train machine learning models over massive data in edge computing.
Most works of FL employ pre-defined model architectures on all participating clients for model training. However, these pre-defined
architectures may not be the optimal choice for the FL setting since manually designing a high-performance neural architecture is
complicated and burdensome with intense human expertise and effort, which easily makes the model training fall into the local
suboptimal solution. To this end, Neural Architecture Search (NAS) has been applied to FL to address this critical issue. Unfortunately,
the search space of existing federated NAS approaches is extraordinarily large, resulting in unacceptable completion time on the
resource-constrained edge clients, especially under the non-independent and identically distributed (non-IID) setting. In order to
remedy this, we propose a novel framework, called FINCH, which adopts hierarchical neural architecture search to enhance federated
learning. In FINCH, we first divide the clients into several clusters according to the data distribution. Then, some subnets are sampled
from a pre-trained supernet and allocated to the specific client clusters for searching the optimal model architecture in parallel, so as to
significantly accelerate the process of model searching and training. The extensive experimental results demonstrate the high
effectiveness of our proposed framework. Specifically, FINCH can reduce the completion time by about 30.6%, and achieve an average
accuracy improvement of around 9.8% compared with the baselines.

Index Terms—Edge Computing, Federated Learning, Non-IID data, Neural Architecture Search.

✦

1 INTRODUCTION

With the rapid proliferation of mobile devices in Internet of
Things (IoT), more and more data are accumulated at the network
edge (e.g., gateway, switch) [1]. With more data and advanced
applications (e.g., autonomous driving, virtual reality), machine
learning (ML) tasks will be a dominant workload in edge comput-
ing (EC) systems [2]. To alleviate the network bandwidth burden
and protect privacy, federated learning (FL) becomes an efficient
solution to analyze and process the distributed data on edge nodes
for those ML tasks [3]. In some traditional FL schemes (e.g.,
FedAvg [3], CFL [4]), the parameter server (PS) first distributes
the updated global model to the edge clients for training on their
local datasets. Then, the clients send the local updated gradient (or
model) to the server for global aggregation. Since the server will
not directly access the local data of the clients, the risk of privacy
leakage in the clients can be significantly relieved.

We observe that the existing FL schemes usually adopt a pre-
defined model architecture with human expertise, bringing two
primary disadvantages. First, the pre-defined architecture easily

• J. Liu, J. Yan, H. Xu, Z. Wang and Y. Xu are with the School
of Computer Science and Technology, University of Science and
Technology of China, Hefei, Anhui, China, 230027, and also with
Suzhou Institute for Advanced Research, University of Science and
Technology of China, Suzhou, Jiangsu, China, 215123. E-mail:
jcliu17@ustc.edu.cn, jmyan@mail.ustc.edu.cn, xuhongli@ustc.edu.cn,
cswangzy@mail.ustc.edu.cn, xuyangcs@ustc.edu.cn.

• J. Huang is with the S2AC Laboratory, School of Computer and Informa-
tion and Key Laboratory of Knowledge Engineering with Big Data, Hefei
University of Technology, Anhui 230002, China. E-mail: hjy@hfut.edu.cn

makes the model training fall into the local sub-optimal solution,
leading to low training performance. Second, it is complex to
develop an accurate and small enough model to be deployed at
clients, which demands intense human effort in an iterative trial
and error process [5]. In other words, manually designing more
efficient architectures heavily relies on human experts’ experience.
In order to mitigate the above disadvantages, we make the attempt
to adopt Neural Architecture Search (NAS) [6] technique to design
the proper network architecture for FL, which automates the de-
sign process of the model architecture without inefficient manual
attempts. The searched NAS architectures have outperformed the
best expert-designed architectures on many computer vision and
natural language processing tasks [7].

To implement efficient FL with NAS in the edge computing,
the following challenges should be taken into considerations.

• Non-IID Data: Both FL and NAS rely on the stochastic
gradient descent (SGD) algorithm [8], which is widely used
to train neural networks with good empirical performance.
The gradient-based algorithms are often based on the main
assumption that data is independent and identically dis-
tributed (IID) [9]. However, it is impractical to assume that
the local data on each client is always IID. For example, two
surveillance cameras in different geographical locations may
capture quite different views, e.g., pedestrians and vehicles.
Therefore, the training performance degrades severely when
the local datasets are highly Non-IID [10].

• Limited Communication Resource: Different from the dat-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 2

TABLE 1: The comparison of the previous solutions and ours.

Schemes Non-IID Data Limited Resource
FedNAS [5]

One-shot NAS [16]
OneNas [17]
FedorAS [18]

Ours

acenters with sufficient communication resources, the band-
width between the server and the workers is always limited
in edge computing [11]. For example, the bandwidth within
typical WANs is only 5∼25Mb/s and is much less than
that within datacenters (over 10Gb/s) [12]. Since the model
parameters need to be frequently transmitted between the
server and clients through WAN, FL demands a large amount
of communication resources in contrast to the conventional
centralized learning paradigm. As the size of VGG16 for
the ImageNet dataset reaches 512MB [13], FL requires to
consume more than 50GB of bandwidth if there are hundreds
of workers, leading to network congestion easily.

• Limited Computation Resource: It has been proved that
one-shot NAS method can achieve excellent performance in
model searching [14], [15], which is also adopted in this
work. In order to search for the optimal model architecture,
a large number of subnets are sampled from a pre-trained
supernet. Assume that a supernet containing 10 choice nodes
(i.e., neurons) and the number of operations (e.g., convolu-
tion, pooling) between each node pair is 4, there would be
410= 1,048,576 subnets in total. Thus, the cost of training
the supernet could be multiple times that of a single subnet,
which will result in an unacceptable computation overhead
especially for the resource-constrained edge clients, leading
to a long completion time.

Recently, several efforts have been made to tackle these
challenges, which can be divided into two categories. A natural
solution (or the first category) is to perform training on the whole
model architecture, i.e., supernet-based [5], [16]. For example,
He et al. [5] consider the solution, called FedNas, of searching
for a better deep neural network (DNN) architecture to improve
the training performance under non-IID settings. Zhang et al.
[16] advocate one-shot NAS as a basis to deal with the non-IID
problem. However, their demand for great computational power
contrasts with the low processing capacity on edge clients, leading
to a long completion time. The second category [17] [18] tries to
sample some subnets from the supernet to reduce the search space
which consists of a lot of network architectures. In OneNAS [17],
a randomly sampled subnet is transmitted to a number of randomly
sampled clients for training without reinitialization, so as to reduce
the communication and computation costs. FedorAS [18] samples
a one-shot path for every client cluster based on the resource
budgets for model search and training. Nevertheless, the process of
fine-tuning or personalizing will introduce the extra computation
cost. Moreover, both these schemes ignore the influence of data
imbalance, i.e., non-IID data, on model searching and training. We
compare the previous solutions with ours in Table 1. In a nutshell,
none of the aforementioned works can fully address these critical

challenges for FL with NAS.
To mitigate the challenges of non-IID data and limited net-

work resource, we propose a novel framework, called FINCH,
to enhance federated learning with hierarchical neural architec-
ture search in edge computing. Specifically, we first divide all
participating clients into different clusters according to the data
distribution on each client, i.e., the data distribution in each cluster
is close to independent identically distributed (IID). Then, several
subnets will be sampled from the supernet and allocated to the
proper client clusters for model searching and training, so as to
significantly reduce the resource (e.g., computation and communi-
cation) cost and completion time. According to the testing results
in Section 2.3, the training performance of FL mainly depends on
the client clustering and subnet allocation. Thus, how to properly
divide the clients into clusters and how to allocate the subnets to
them are the key challenges in FINCH. The main contributions of
this paper are:

• We propose a novel framework, called FINCH, which adopts
hierarchical neural architecture search (NAS) to accelerate
the process of federated learning, and formally proves the
convergence of FINCH.

• We design an efficient algorithm (termed DCSA) to adap-
tively perform client clustering and subnet allocation, so as
to achieve less completion time and resource usage for model
searching and training.

• The extensive experimental results demonstrate the high
effectiveness of our proposed framework. Specifically, FINCH

can improve the test accuracy by about 9.8% under the
resource constraints, and reduce the time cost by about
30.6%, compared with the benchmarks.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries and proposes the novel framework
of FINCH. The problem is formalized and the efficient algorithms
are proposed for FINCH in Section 3. We give the convergence
analysis in Section 4. In Section 5, the experiments are conducted
and the corresponding results are presented. The related works
are summarized in Section 6. Finally, we conclude the paper in
Section 7.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Background
2.1.1 Federated Learning
FL is a variant of distributed machine learning (DML) and its
objective function can be decomposed into a linear combination of
K local objective functions, where K = |V| > 1 and V is the set
of clients participating in the model training. Each local objective
function depends on the private data hosted by a client and a
set of shared parameters ω. Considering a standard supervised
learning task (e.g., L-class classification) where the predictive
model is modeled as a fixed deep neural networkA with learnable
parameters ω, the expected loss on each client vk ∈ V is given as:

Fk (ω,A | Dk) =
1

Nk

∑
i∈Dk

f(xi, yi;ω,A) (1)

where Dk := {(xj , yj)}Nk
j=1 is the local training data comprising

input-output tuples (x, y) and Nk is the local data size on the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 3

TABLE 2: Key Notations

Symbol Semantics

K a set of local objective functions
T the total number of training iterations
V a set of participating clients
A the neural network architecture
ω the model parameters
δ the convergence threshold of the model training
Dk the local dataset on the client k
N the total data size on all clients
Nk the local data size on the client vk
Dk the local dataset in the client k
Q the set of aggregators
B the bandwidth budget on the server

btr
the bandwidth consumption by aggregator r for
transmitting the model to the server at the cluster Cj

hti the completion time of the cluster Cj at iteration t
F(w) the empirical loss function

client vk. The total data size on all clients is denoted as N =∑
vk∈V Nk. The learning problem is to find the optimal parameter

vector ω∗, and the objective function of FL is defined as:

min
ω
F(ω,A) def

= min
ω

K∑
k=1

Nk

N
· Fk (ω,A | Dk) (2)

Due to non-convexity of the loss functions, the widely used
optimization methods of network parameters are gradient based,
e.g., stochastic gradient descent (SGD) [9]. Gradient descent
methods take derivatives of loss function according to the model
parameters, then move the parameter values in the negative of the
gradient. Some important notations are listed in Table 2.

2.1.2 Neural Architecture Search

Neural Architecture Search (NAS) is proposed to automately
design the proper network architecture for FL without inefficient
manual attempts [6]. There are three major components in NAS
as summarized in [19], namely search space, search policy, and
performance evaluation. Considering a wide range of IoT applica-
tions, e.g., video surveillance, we focus on a computational vision
problem which always adopts the convolution neural network
(CNN) model for training. Each node (i.e., neuron in CNN) is a la-
tent representation (e.g., a feature map in convolutional networks)
and each directed edge between two nodes is associated with some
operations (e.g., convolution, max pooling, zero) that transform
the node. A learned cell, which is a directed acyclic graph (DAG)
consisting of an ordered sequence of some nodes, could either be
stacked to form a convolutional network or recursively connected
to form a recurrent network. For convolutional cells, the input
nodes are defined as the cell outputs in the previous two layers [5].
The network architecture of the pre-trained model on the server is
usually composed of numerous amount of cells, leading to a large
search space.

In order to accomplish the architecture search, early pieces of
literature mainly adopt several search policies, e.g., reinforcement

Algorithm 1 FL with Hierarchical NAS (FINCH)
1: Initialize parameter ω and architecture A of the supernet
2: Processing at the PS
3: if the requirements of model training is met then
4: for each global update do
5: while number of received cluster models < M do
6: Waiting for the cluster models from the

selected aggregators
7: Update the global parameter ω and architecture A
8: Sample the subnets from the supernet
9: Distribute the subnets to the cluster Cj according

to the proposed algorithm in Section 3
10: Update the resource budgets
11: Processing at aggregator qj
12: for t′ = 1 to T/λ1 do
13: Receive ωi

t′ and Ai
t′ from each client vi ∈ Cj

14: Obtain the cluster model ω̃j
t′ and Ãj

t′ by Eq. (5)
15: if t′ mod λ2 == 0 then
16: Send ω̃j

t′ and Ãj
t′ to the parameter server

17: Receive the fresh global model from PS
18: Updated the local cluster model
19: Distribute ω̃j

t′ and Ãj
t′ to all clients in Cj

20: Processing at client vi
21: for t′=1 to T do
22: Obtain local model ωi

t′ and Ai
t′ by Eq. (4)

23: if t′ mod λ1 == 0 then
24: Upload ωi

t′ and Ai
t′ to the aggregator qj

25: Receive the updated model from qj

learning (RL) [20] or evolutionary algorithms [17]. Nevertheless,
these two solutions often use hundreds of GPUs for computation
and take a large volume of GPU hours to finish the searching [7].
For the sake of searching efficiency, Liu et al. [21] propose a dif-
ferentiable NAS variant, in which a one-shot over-parameterized
supernet is regarded as a full graph and all candidate architectures
are derived as its sub-graphs (or subnets). To solve the objective
function Eq. (2), previous works [22], [23] choose a fixed model
architecture A and then design various optimization techniques to
train the parameters ω. Our goal is to jointly learn the architecture
A and the parameters ω within all the mixed operations (e.g.,
parameters of the convolution filters). Thus, the objective function
Eq. (2) can be reformulated as:

min
ω,A
F(ω,A) def

= min
ω,A

K∑
k=1

Nk

N
· Fk (ω,A | Dk) (3)

Different from Eq. (2), the parameters ω and architecture A
will be optimized simultaneously through solving the objective
function Eq. (3).

2.2 FL with Hierarchical NAS

The previous works of FL with NAS mainly focus on finding
an optimal candidate model (e.g., architecture and parameter)
from a huge search space, leading to an enormous communica-
tion/computation overhead and an unacceptable completion time

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 4

Client K Client K-1Client 1 Client 2 Client K-1 Client KClient 1 Client 2 Client KClient 1 Client 2 Client 5

Server Server
Server

Client K-1

Local DataSampled SubnetsSupernet

(a) (b) (c)

Fig. 1: Illustration of different NAS approachs. (a) OneNAS [17]: the same subnet is allocated to all clients; (b) DecNas [6]: different subnets
are allocated to different clients; (c) Our hierarchical NAS: different subnets are allocated to each client cluster and the client in each cluster
adopts the same subnet for searching and training.

[24]. Although some works try to conquer these disadvantages,
they always ignore the impact of non-IID data on the model
searching and training, resulting in low performance. In order to
tackle these challenges, we propose a novel framework to accel-
erate the training process of federated learning with hierarchical
neural architecture search (FINCH) in edge computing.

FINCH aims to efficiently search for better model architecture
and parameters within a given resource budget, considering data
distribution among the clients. In order to significantly reduce the
search space and accelerate the training process, we divide the
clients into multiple clusters according to the data distribution
and allocate proper subnets from the pre-trained supernet to these
specified client clusters for model searching and training. The
framework of FINCH includes the client side, the aggregator side
and the parameter server side from bottom up. Specifically, the
overall procedure of FINCH is illustrated in Alg. 1, including
client clustering, local model searching and training, intra-cluster
aggregation and inter-cluster aggregation.

1) Client Clustering: The clients in the network are organized
into M clusters, i.e., C = {C1, C2, ..., CM}, satisfying ∪Mj=1Cj =
V and Ci ̸= ∅, Ci ∩ Cj = ∅,∀i ̸= j. In each cluster, a client
will be randomly selected as the aggregator. Each client sends its
local updated model parameters and architecture to the selected
aggregator qj in the cluster Cj , instead of directly sending them to
the remote server for global aggregation. The set of all aggregators
is denoted as Q = {q1, q2, ..., qM} with M = |Q|. Note that the
detailed clustering algorithm will be introduced in Section 3.

2) Local Model Searching and Training: In the t-th iteration,
each client vi performs model updating of parameters and archi-
tecture over its local dataset by the mini-batch SGD algorithm [7]
(Line 21-25):{

ωi
t = ωi

t−1 − ηω∇Ftr(ω
i
t−1,A)

Ai
t = Ai

t−1 − ηA
[
∇Ftr(ω,Ai

t−1) + π∇Fval(ω,Ai
t−1)

] (4)

where ωi
t−1 is the latest model available to the i-th client at the

start of the t-th iteration. Ftr(w,A) and Fval(w,A) denote the
loss with respect to the local training data and validation data
with ω and A, respectively. η is the learning rate and π is a non-

negative regularization parameter that balances the importance of
the training loss and validation loss. ∇F(·) denotes the gradient
computed on the batch of randomly-sampled local data.

3) Intra-cluster aggregation: Let λ1 denote the number of
local updating iterations before each intra-cluster aggregation, i.e.,
each client sends its local model updates to the aggregator if the
number of iterations t is an integer multiple of λ1 (Line 13). The
aggregator qj will aggregate the local updated model from the
clients vi ∈ Cj [5] (Line 14):

ω̃j
t =

∑
vi∈Cj

Ni

N j
ωi
t

Ãj
t =

∑
vi∈Cj

Ni

N j
Ai

t (5)

where N j denotes the total data size of clients in the cluster Cj .
4) Inter-cluster aggregation: Let λ2 denote the number of

intra-cluster aggregations on each aggregator before the inter-
cluster aggregation, i.e., global model updating. If the number of
iterations t is the integer multiple of λ1λ2, the parameter server
will perform inter-cluster aggregation to obtain the updated model
ωj
t and architecture Aj

t (Line 3-7). After that, several subnets
will be sampled from the supernet and allocated to the aggre-
gators (Line 8-10). Subsequently, the aggregator qj distributes
the updated model and architecture to each client in the cluster
Cj , i.e., ωi

t = ωj
t ,Ai

t = Aj
t . Then, the client continues model

searching with the received model from the aggregator for the
next iteration. During the aggregation, the supernet will directly
replace its parameters with the subnets’ model parameters, if there
is no overlap between different subnets. Otherwise, the supernet
will aggregate the parameters with different weights, if there is
overlap between different subnets.

2.3 Illustration of FINCH

For a better explanation of FINCH, we give an example in Fig.
1. We adopt three different model searching methods (cases I-III)
for comparison. As shown in the left plot of Fig. 1 (case I), only
one subnet will be sampled and distributed to all participating

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 5

TABLE 3: The completion time and test accuracy of FL under
different schemes.

Schemes
Fixed Target Accuracy Fixed Completion Time
Same Different Same Different

Subnet Subnets Subnet Subnets
Non-Clustered 1.25 GPU/h 1.18 GPU/h 59.7% 62.3%

Clustered 1.06 GPU/h 0.85 GPU/h 67.4% 76.5%

clients in each iteration. Different from case I, each client will be
allocated a unique subnet sampled from the supernet for model
searching and training in case II, shown in the middle plot of
Fig. 1. In FL, the performance of model searching and training
(e.g., completion time and test accuracy) will be degraded on each
client due to the skewness of the local data [16]. To this end,
we divide the participating clients into multiple clusters according
to the data on these clients, i.e., data distribution in each cluster
is close to IID. For our proposed FINCH framework (case III),
several subnets will be sampled and allocated to the proper client
clusters for model searching and training, which will significantly
accelerate the process of FL. Combining the example in Fig. 1, we
perform two groups of tests to illustrate the advantages of FINCH.

We first test the performance (e.g., completion time and test
accuracy) of FL under the non-IID setting. The first set of
experiments observes the completion time of model searching and
training, within a target test accuracy (e.g., 70%). We allocate the
same subnet and different subnets to the clients, i.e., cases I and II,
respectively. As shown in Table 3, these two cases take relatively
long completion time (e.g., 1.25 and 1.18 GPU/hours) to achieve
the target test accuracy because the data is Non-IID. To alleviate
this problem, we try to perform client clustering such that the data
distribution in each cluster is close to IID. When the same subnet
is allocated to the clustered clients, the performance of model
searching and training is well improved, e.g., the completion time
is 1.06 GPU/hours. In order to further improve the time cost, we
sample the different subnets to the clustered clients for searching
and training in parallel, and the completion time of case III is about
0.85 GPU/hours. In other words, our proposed method (case III)
can reduce the completion time by about 27% compared with the
other solutions.

We also observe the performance of test accuracy within a
fixed completion time (e.g., 1 GPU/hour). Since our proposed
method can reduce the search space, less time is needed to com-
plete the model searching and training. Table 3 shows that our pro-
posed method outperforms the other three solutions. Specifically,
case III can improve the average test accuracy by about 13.3%
compared with cases I and II. Thus, our FINCH can significantly
improve the training performance, including completion time and
test accuracy, compared with the benchmark cases. Nevertheless,
the performance improvement of model searching and training
also depends on the different ways of client clustering and subnet
allocation, which will be introduced in Section 3.

3 ALGORITHM DESIGN

In fact, the data distribution on the clients may not frequently
change [25]. Thus, we first perform client clustering after a given

number (e.g., 10) of rounds. We design an efficient algorithm,
called DCSA, to obtain the optimal client clustering and subnet
allocation, respectively. In DCSA, we first find the proper client
clustering scheme according to the data distribution in the net-
work, so as to reduce the impact of non-IID data on the model
searching and training performance. Then, we sample the subnets
from the pre-trained supernet and allocate them to the client
clusters, considering the evaluation performance and the difference
between the data distribution of the cluster and the population
distribution.

3.1 Client Clustering

According to the test results in [16], the data distribution on
each client cluster has a great influence on model searching and
training. Therefore, we try to reduce the distance between the
data distribution of local data on each cluster and the population
distribution of the global dataset. To this end, we adopt earth
mover distance (EMD) [26] to measure the difference of data
distribution between two datasets D1 and D2:

S(D1,D2) =
∑
li∈L

∥∥∥∥N i
1

N1
− N i

2

N2

∥∥∥∥ (6)

where li ∈ L and L = {l1, l2, ..., lz} is the label space of
classification problem. N i

j denotes the total size of data labeled
as li in cluster Vj . Then, we adopt Sj to denote the difference
of data distribution between the global dataset and cluster Vj’s
dataset:

Sj = S(D,Dj) =
∑
li∈L

∥∥∥∥∥N i

N
−
N i

j

Nj

∥∥∥∥∥
=

∑
li∈L
∥ψi − ϕij∥ (7)

where ψi and ϕij denote the proportion of the data labeled li in
the total data and the cluster Vj’s data, respectively.

Let yji denote whether client vi belongs to cluster Vj or
not. In other words, yji = 1 if qj is the aggregator of client
vi; y

j
i = 0 otherwise. The server will select the aggregator

according to the transmission delay for each cluster at a fixed
interval. Note that the selected aggregator may not be avail-
able or down because of mobility, the server will intermittently
communicate with the aggregator to ensure system reliability.
The client clustering strategy Y = {yji }vi∈V,qj∈Q needs to
be efficiently determined. During client clustering, we mainly
consider two common constraints in FL, i.e., the model conver-
gence and completion time. In DCSA, an aggregator traverses
the data distribution of all the unassigned clients and selects
the clients whose data distributions can make the cluster’s data
distribution to be the closest to the population distribution. Ac-
cordingly, we define the cluster construction problem for DCSA.

minmax
qj∈Q

S(D,Dj)

s.t.

F(ω) ≤ δ
Hj(Y) ≤ Hmax ∀qj ∈ Q∑

qj∈Q y
j
i = 1, ∀vi ∈ V

yji ∈ {0, 1} ∀vi ∈ V, qj ∈ Q

(8)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 6

The first inequality expresses the convergence requirement, where
δ is the convergence threshold of the loss value of the learning
task. The second set of inequalities represents that the completion
time of each cluster should not exceed the given threshold Hmax.
The third set of equalities denotes that each client belongs to a
unique cluster. Our goal is to minimize the maximum difference
between the data distribution of the cluster and population distri-
bution of the global dataset under clustering strategy Y .

We introduce the client clustering algorithm for FINCH, which
is formally described in Alg. 2. Some parameters, e.g., data
size, the threshold of completion time and convergence, are first
initialized (Lines 1-2). At the beginning, we randomly select a
client from V ′ for cluster initialization (Line 4) To avoid all clients
being in only one cluster, we set the threshold for the maximum
number of clients Q and the completion time Hmax in each
cluster (Line 5). A client is assigned to the cluster each time,
considering the data distribution of each client and population
distribution (Lines 7-12). The client clustering algorithm will
terminate when all clients are assigned to the clusters (Line 13).

3.2 Subnet Allocation

3.2.1 Search Space Design in NAS

After the client cluster has been constructed, our proposed algo-
rithm samples the subnets from the supernet and allocates them to
the specified clusters. In this work, we mainly concentrate our
efforts on a computational vision problem as it is a common
task for edge clients. Hence, we design our search space, i.e.,
supernet, based on convolutional neural networks (CNNs) [27].
Following the DARTS approach [21], we define a directed acyclic
graph (DAG) where all predecessor nodes are connected to every
intermediate node with all possible operations. However, finding
an optimal model architecture requires an enormous amount of
resource (e.g., computation and time) in such a large search space
with hundreds and thousands of nodes in DAG [21]. Assume that
there are 100 nodes in the supernet, and 4 optional operations
for each node pair. There are totally about 1.6×1060 candi-
date subnets, leading to intolerable completion time (e.g., 1,000
GPU/hours). In order to reduce the search space, some works
adopt a cell with several nodes (e.g., 4 or 5) as the granularity for
model searching. Then, the optimal model architecture is formed
by stacking the searched cell.

For better illustration, we give an example of a cell in Fig.
2. Inside a cell, several nodes with some potential operations
are connected between the input node and output node. For
convolutional cells, the input nodes are defined as the cell outputs
in the previous two layers. The task of learning the cell therefore
reduces to learning the operations on its edges [21]. Although
searching a model with a single cell can significantly reduce the
completion time, however, the architecture obtained by stacking
this cell usually needs a lot of rounds of retraining to achieve
better test accuracy, especially under the non-IID setting [28]. To
alleviate this problem, we form the cell group as the supernet for
model searching. Specifically, the subnets are sampled from the
cell group and allocated to the specified clients. After that, the
optimal subnet with the best test accuracy is stacked to form the

Algorithm 2 Client Clustering in DCSA

1: Initialize data size Ni, N
j
i , ∀Ci ∈ C, lj ∈ L; the threshold of

completion time Hmax and convergence threshold δ
2: Initialize Q′ ← ∅;V ′ ← V
3: while V ′ ̸= ∅ do
4: Select a client from V ′ for cluster initialization randomly,

i.e., q′i ← ∅,∀vi ∈ V ′

5: while Hq′i ≤ Hmax and |q′i| ≤ Q do
6: Find the client ṽj′ with the closest data distribution:
7: ṽj′ ← argminvj∈V′ S(D,Dq′i+vj)
8: Assign the client to the cluster q′i:
9: V ′ ← V ′ − {ṽj′}

10: q′i ← q′i + {ṽj′}
11: yj

′

i = 1

12: Q′ ← Q′ ∪ q′i
13: return final clustering strategy Y and client clusters Q′

final model architecture. Compared with the single cell scheme,
the model architecture obtained by our proposed scheme requires
less completion time, and significantly improves the test accuracy.

We further test the impact of the number of cells and groups
on the performance of model searching and training. A large
number of cells indicate more computation overhead while the
edge client is always resource-constrained. In order to meet the
resource capacity constraints, let the maximum number of cells be
50 for efficient searching and training [24]. Given a fixed number
of iterations, we observe the test accuracy and completion time
by changing the number of cells from 1 to 50. As shown in Fig.
3, the test accuracy increases with the number of cells, but with
the rapid growth of completion time. When there are more than
20 cells, the test accuracy gradually tends to be stable, however,
the completion time still increases sharply. Thus, we choose 20
cells as the size of the target model architecture. We then test
the performance of model searching with different numbers of
groups. In Fig. 4, we change the number of cells in each group
as 1, 2, 4, 10 and 20. The test results show that more cells in
a group will significantly improve the training performance (e.g.,
accuracy), however, leading to higher computation overhead. In
order to achieve a balance between the performance and resource
consumption, we select 4 cells as a group for model searching.
When the optimal subnet in the group is explored, it will be
stacked several times to form the final model architecture.

3.2.2 Algorithm for Subnet Allocation
Note that the proper subnet allocation can significantly improve
the model searching efficiency and training performance according
to the test results in Section 2.3. Intuitively, one straightforward
idea is to put more training budgets or data on models that are
likely to achieve better performance. According to the testing
results in [29], increasing the training budget can significantly
improve the training performance of DNN. However, the worse
performing models that are usually ignored also have an important
influence on the model training [29]. Thus, we should push
the performance limits of the worse performing models, which

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 7

Output of

Cell k-1

 Output of

Cell k-2

1

2

3

4

Output of

Cell k

Conv Pool Skip

X

Y

direct connection

candidate operation

Fig. 2: An example of search space in NAS.

can bring a better optimized weight-sharing graph, such that
all trainable components (e.g., channels) reach their maximum
potential in contributing to the final performance. Besides, it can
lead to more informative gradients and better exploration in the
architecture space, thus yielding better NAS performance [29].

We first give the definition of subnet allocation in hierarchical
NAS (SA-HNAS) problem. In order to improve the speed of model
searching and training, several subnets are sampled and allocated
to the client clusters. xti,j denotes whether the subnet (ωi,Ai)
is allocated to the cluster Cj or not at iteration t. If xti,j = 1,
the subnet (ωi,Ai) will be allocated to the client cluster Cj for
further searching and training. Otherwise, xti,j = 0. Without loss
of generality, three main kinds of resources, i.e., computation
cost, network bandwidth and completion time, are taken into
considerations in this work.

Searching and training the deep neural network is always
computation-expensive for the resource-constrained clients, es-
pecially the larger models are usually selected for better model
performance [28]. We believe that the number of floating-point
operations (FLOPs) is reasonable to use as a proxy measure for
actual computation cost [16]. Let flops(·) denote the number of
floating points of the sampled architecture which is a commonly
used metric to evaluate model complexity.

We use B to represent the bandwidth budget on the server,
which is configured by the users at the beginning of model
training. Let btr(ωj , Aj) denote the bandwidth consumption by
aggregator r for transmitting the local model parameters ωj and
architectureAj of the cluster Cj to the server. Thus, the bandwidth
consumption of the cluster Cj at iteration t is

Bt
j =

∑
j∈Cj

btj,r(ω
t
j ,At

j) + btr(ω
t
j ,At

j), (9)

where
∑

j∈Cj
btj,r(ω

t
j ,At

j) denotes the bandwidth consumption
of model transmition between the aggregator r and the clients in
the cluster Cj .

In practice, some tasks often need to be completed within
a deadline. There are two main steps in the proposed scheme,
including searching phase and training phase. We use dttr(ω

t
j ,At

j)
and dtval(ω

t
j ,At

j) to denote the completion time of model training
and searching in the cluster Cj at iteration t, respectively. There-
fore, the completion time of the cluster Cj at iteration t is:

htj = max{dttr(ωt
j ,At

j), d
t
val(ω

t
j ,At

j)}, (10)

0 10 20 30 40 50
40

45

50

55

60

65

70

75

 Test Accuracy
 Time

No. of Cells

Te
st

 A
cc

ur
ac

y
(%

)

0

4

8

12

16

20

 T
im

e
(G

PU
/h

)

Fig. 3: Test accuracy and
completion time with different
numbers of cells.

0 4 8 12 16 20
40

45

50

55

60

65

70

 Test Accuracy
 MACs

No. of Cells in Each Group

Te
st

 A
cc

ur
ac

y
(%

)

0.0

0.2

0.4

0.6

0.8

1.0

 M
AC

s
(G

)

Fig. 4: Test accuracy and
FLOPs with different numbers
of cells in each group.

Furthermore, the completion time of all participating clients at
iteration t can be denoted as Ht = maxj∈M htj . Accordingly, we
formulate the SA-HNAS problem as follows:

min
T∈{1,2,...}

Ht

s.t.

F(ωT ,AT) ≤ δ,
flops(At

i) ≤ FLOPSmax, ∀t∑T
t=1

∑M
j=1B

t
j ≤ B∑

j∈M xti,j = 1, ∀i, t
xti,j ∈ {0, 1} ∀i, j, t

(11)

The first inequality ensures the convergence of model training
after T training iterations. The second and third inequalities ensure
the computation and communication constraints during the model
searching and training, respectively. The last set of constraints tells
that each sampled architecture of model will only be assigned to
one cluster. The objective of the SA-HNAS problem is to minimize
the completion time of FL process.

In order to efficiently solve this problem, we propose a greedy-
based algorithm to allocate optimal subnets to the clustered clients,
considering the evaluation performance, resource consumption
and data distribution. Specifically, the subnet with more resource
consumption and worse performance will be allocated to the
cluster which has a larger non-IID level of local data, so as to
significantly improve the performance of model searching and
training. For resource consumption, we mainly consider the com-
munication (bandwidth consumption) and computation (FLOPs)
respectively. Accordingly, we define the resource consumption as
follows:

Rt
j = ϵ ·

Bt
j

B
+ (1− ϵ) ·

flops(At
j)

FLOPSmax
(12)

where weight ϵ ∈ (0, 1) is determined by the specific require-
ments to balance objectives. For instance, when computation
consumption dominates the resource cost, a small weight ϵ will
be set for computation consumption in the function. Besides,
we adopt the difference between the data distribution of cluster
Dj and the population distribution of global dataset D, i.e.,
S(D,Dj), to represent the level of data imbalance, i.e., non-IID.
In other words, the greater the difference of the data distributions,
the larger the level of non-IID data on the cluster. During the
subnet allocation, each client cluster Cj is also assigned a weight
φj ∈ (0, 1], along with

∑
Cj∈C φj = 1. The server will perform

weighted aggregation of each subnet Aj from the client cluster Cj
with the weight φj .

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 8

Algorithm 3 Subnet Allocation in DCSA

1: Initialize allocation strategy X = {x0i,j} and resource cost
R = {R0

j}, ∀vi ∈ V, qj ∈ Q; V ′ ← V ; the set of subnets A
2: for each global update t = T/λ1λ2 do
3: Obtain the cost Rt−1

j by Eq. (12) and the evaluation
accuracy ct−1

j of subnet At−1
i on the cluster j if xt−1

i,j = 1
4: Compute the non-IID level for each cluster q ∈ Q
5: Range the clusters q ∈ Q in increasing order with the

non-IID level to form the updated set Q′

6: Range the subnets A ∈ A in the decreasing order with
ct−1
j /Rt−1

j to form the updated set A′

7: for k = 1 to |Q′| do
8: i← A′[k]
9: j ← Q′[k]

10: xti,j = 1
11: X ← X ∪ xti,j
12: return final subnet allocation strategy X

We introduce the detailed algorithm for subnet allocation in
Alg. 3. At the beginning, the allocation strategy X = {x0i,j} and
the resource cost R = {R0

j} are initialized (Line 1), where xti,j
and R0

j denote whether the subnet i is assigned to the cluster
j or not and the resource cost on the cluster j at iteration t,
respectively. The network information (e.g., resource consumption
and evaluation accuracy) is collected by the server (Line 3).
Specifically, ct−1

j denotes the evaluation accuracy on the cluster j
at iteration t−1. Besides, we compute the level of non-IID data in
each client cluster (Line 4). Then, we range the client cluster and
sampled subnets according to the network information and data
distribution, respectively (Line 5-6). Finally, each sampled subnet
is allocated to the proper client cluster for model searching and
training (Line 7-12). Thus, the model searching and training will
be efficiently performed through the client clustering and subnet
allocation algorithms in DCSA.

4 CONVERGENCE ANALYSIS

To show the feasibility of the proposed framework, we prove that
FINCH can achieve a constant convergence bound. In FINCH, the
model searching and training of the sampled subnet in each cluster
are performed simultaneously. We first introduce some lemmas
which have been proved in [30].

Lemma 1. Let L > 0. The function Fi of each subnet on client vi
searched by the NAS algorithms satisfies the block-wise Lipschitz
smoothness for any model weight x and y:∥∥∥∥∂Fi

∂x
− ∂Fi

∂y

∥∥∥∥ ≤ L ∥x− y∥ (13)

Lemma 2. Let σ > 0. The gradient variance of searched subnet
by NAS is bounded by:

E
∥∥∥∥∂Fi

∂x
− E

∂Fi

∂x

∥∥∥∥2 ≤ σ2 (14)

The varied subnets can perform model searching and training
independently on multiple client clusters in parallel [31], [32].

Combining the Lemmas 1-2, we then make the following assump-
tions on the functions Fi,∀vi ∈ V for analysis [33].

Assumption 1. (Smoothness) F is L-smooth with L > 0, i.e., it
always holds F(y)−F(x) ≤ ⟨∇F(x), y−x⟩+ L

2 ∥y − x∥
2 for

any two model parameters x and y.

Assumption 2. (Strong Convexity) Fi is µ-strongly convex with
µ > 0, i.e., it always holds Fi(y)−Fi(x) ≥ ⟨∇Fi(x), y−x⟩+
µ
2 ∥y − x∥

2 for any two model parameters x and y.

Assumption 3. (Bounded Gradient Variance) The variance
of gradients at each client cluster Cj ∈ V is bounded:
E∥∇F(ω)−∇Fj(ω)∥2 ≤ σ2, where σ is a positive number.

Assumption 4. (Existence of Global Optimization) Assume that
there exists at least one solution, denoted as ω∗, to achieve the
global minimum of the loss function F(ω).

We first introduce some parameters (e.g., λ1 or λ2) for con-
vergence analysis. Our FINCH framework adopts hierarchical NAS
for model searching and training. In FINCH, intra-cluster aggrega-
tion may occur over LANs, while inter-aggregation usually occurs
over WANs with more bandwidth consumption [34]. In order to
save the resource cost, the frequency of intra-cluster aggregation
should be increased (e.g., λ1 = 1), while that of inter-cluster
aggregation needs to be decreased for efficient model searching
and training. We first prove that the aggregated cluster model
is equal to training on the cluster’s virtual aggregated dataset
with the searched architecture A at each iteration t (Theorem 3).
Then, we prove the convergence of model training and obtain the
convergence bound after T iterations (Theorem 4).

Theorem 3. If the number of local updating iterations is 1, i.e.,
λ1 = 1, the aggregated cluster model ω̃j

t satisfies:
ω̃j
t = ωj

t−1 − η∇Fj(ω
i
t−1) (15)

where Fj is the loss function on dataset Dj .

Proof. By Eqs. (4) and (5), we have
ω̃j
t =

∑
vi∈Cj

ρij(ω
i
t−1 − η∇Fi(ω

i
t−1))

=
∑
vi∈Cj

ρijω
i
t−1 − η

∑
vi∈Cj

ρij∇Fi(ω
i
t−1)

= ωj
t−1 − η

∑
vi∈Cj

ρij∇Fi(ω
i
t−1) (16)

where ρij = Ni

Nj and ∇Fi(ω
i
t−1) := ∇Ftr(ω

i
t−1,A). Due to the

linearity of the gradient operator, we can derive that∑
vi∈Cj

ρij∇Fi(ω
i
t−1) = ∇

∑
vi∈Cj

ρijFi(ω
i
t−1)

= ∇Fj(ω
i
t−1) (17)

Taking Eq. (17) into Eq. (16), we have
ω̃j
t = ωj

t−1 − η∇Fj(ω
i
t−1) (18)

FINCH searches for the optimal model architecture and trains
the model parameters at the same time. Assume that FINCH

performs a total of T training iterations, and the number of inter-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 9

cluster aggregations is G = T/λ2. Combining Theorem 3, we
prove the convergence of our FINCH framework.

Theorem 4. Let ω0 be the initial global model. Thus, the trained
global model satisfies

F(ωT)−F(ω∗) ≤ τ(F(ω0)−F(ω∗)) +
(1− τ)δ
2Lµ

(19)

where τ = (1− Lµη)T .

Proof. For qj ∈ Q, t = gλ2, it holds that
ω̃j
t = ω̃j

gλ2
= ωj

gλ2−1 − η∇Fj(ω
j
gλ2−1) (20)

where g ∈ {0, 1, ..., G} is the index of inter-cluster agregations.
According to Assumption 1, it is obvious that F is L-smooth.

If 0 < L ≤ 1, it follows
F(ω̃j

gλ2
)−F(ω∗)

≤F(ωj
gλ2−1)−F(ω

∗) + ⟨∇F(ωj
gλ2−1), ω̃

j
gλ2
− ωj

gλ2−1⟩

+
L

2
∥ω̃j

gλ2
− ωj

gλ2−1∥
2

=F(ωj
gλ2−1)−F(ω

∗)− η⟨∇F(ωj
gλ2−1),∇Fj(ω

j
gλ2−1)⟩

+
Lη2

2
∥∇Fj(ω

j
gλ2−1)∥

2

≤F(ωj
gλ2−1)−F(ω

∗) +
Lη

2
∥∇F(ωj

gλ2−1)−∇Fj(ω
j
gλ2−1)∥

2

− Lη

2
∥∇F(ωj

gλ2−1)∥
2 (21)

Substituting ω in Assumption 3 by ωj
gλ2−1, we have

∥∇F(ωj
gλ2−1)−∇Fj(ω

j
gλ2−1)∥

2 ≤ σ2 (22)
Combining Assumptions 2 and 4, it follows
∥∇F(ωj

gλ−1)∥
2 = ∥∇F(ωj

gλ2−1)−∇F(ω
∗)∥2

≥ 2µ[F(ωj
gλ2−1)−F(ω

∗)] (23)
By taking Eqs. (22) and (23) into Eq. (21), we obtain

F(ω̃j
gλ2

)−F(ω∗)

≤ (1− Lµη)F(ωj
gλ2−1)−F(ω

∗) +
Lησ2

2
≤ (1− Lµη)λ2 [F(ωj

(g−1)λ2
)−F(ω∗)]

+
[1− (1− Lµη)λ2]σ2

2Lµ

≤ (1− Lµη)λ2 [F(ω(g−1)λ2
)−F(ω∗)]

+
[1− (1− Lµη)λ2]σ2

2Lµ
(24)

where ωj
(g−1)λ2

= ω(g−1)λ2
because the global model updating

is performed with the cluster models when the index of the current
iteration is an integer multiple of λ2. Let Φj = Nj/N ∈ (0, 1].
We can obtain the difference between F(ωT) and F(ω∗) by the
global updating of G times in Eq. (3) as follows:

F(ωT)−F(ω∗) = F(ωGλ2
)−F(ω∗)

≤
∑
qj∈Q

ϕj(F(ω̃j
Gλ2

)−F(ω∗))

≤ (1− Lµη)λ2(F(ω(G−1)λ2
)−F(ω∗))

+
[1− (1− Lµη)λ2]σ2

2Lµ

≤ (1− Lµη)Gλ2(F(ω0)−F(ω∗))

+
1− (1− Lµη)Gλ2

1− (1− Lµη)λ2

[1− (1− Lµη)λ2]σ2

2Lµ

≤ τ(F(ω0)−F(ω∗)) +
(1− τ)σ2

2Lµ
(25)

where τ = (1− Lµη)T .

Thus, we complete the proof of convergence analysis and
conclude that our FINCH framework can achieve a constant
convergence bound.

5 PERFORMANCE EVALUATION

5.1 Performance Metrics and Benchmarks
In this paper, we evaluate the performance of different schemes
by adopting five metrics as follows: (1) Training loss is used
to validate whether an FL algorithm can efficiently guarantee
the convergence or not. (2) In each round, we will evaluate the
global model on test dataset and record the test accuracy. (3)
Network traffic, i.e., bandwidth consumption, is the total size of
the model transmitted through the network for model distribution
and aggregation among all clients, which quantifies the commu-
nication cost in training. (4) Completion time is the time duration
until training terminates, which evaluates the training speed. (5)
Multiply-accumulate operations (MACs) is always adopted for
specifying computation cost, i.e., FLOPs, on the edge client.

We compare FINCH with five classical FL schemes, i.e.,
HFL [23], FedNas [5], DecNas [6], OneNas [17] and FedorAS
[18]. In order to evaluate the efficiency of NAS, we compare
FINCH with HFL [23], which adopts the pre-defined CNN model
architecture in hierarchical federated learning paradigm to handle
the non-IID problem. Furthermore, we compare FINCH with the
following four solutions to test the performance improvement of
hierarchical NAS. Specifically, FedNas [5] first searches for the
cell architecture as the proxy task and then transfers the learnt
structure to the target dataset. DecNas [6] generates a group of
candidate neural architectures which are trained locally on clients,
and the best one will become the backbone model in the next
iteration. In OneNas [17], one-shot NAS is introduced as a basis to
deal with limited resource issue, where a large network is adopted
as the global model, including all candidate network architectures.
The main idea of FedorAS [18] is to sample a subspace for each
client considering its resource budgets, focusing on the device
heterogeneity and communication efficiency. Finally, we adopt the
scheme Random which randomly select the subnet for each client
cluster to show the effectiveness of our proposed algorithm SA-
HNAS in FINCH.

5.2 Simulation Evaluation
5.2.1 Evaluation Settings
We build an FL experimental environment on an AMAX deep
learning workstation (CPU: Intel 671 (R) E5-2620v4, GPU:
NVIDIA TITAN RTX), upon which the baselines are implemented
with PyTorch [35]. Our experiments are performed on Ubuntu
18.04, CUDA v10.0, cuDNN v7.5.0. On each client, the batch

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 10

Input

Normal Cell

Reduce Cell

Normal Cell

Reduce Cell

Normal Cell

FC & Softmax

(a) The network architecture searched for the CIFAR10 dataset.

�������

�

�	�
���
���

��	�
���
���

������� ���
���
���
�

���
���
���

���
���
��� ������

���
���
���

�
�	�
���
���

���
���
���

(b) The normal cell searched for the ImageNet100 dataset.

�������

�

�	�
���
���

�
�	�
���
���

�������

����
����	��

�

���
���
���
����
����	��

�
����
����	��

���
���
���

������

���
���
���

(c) The reduction cell searched for the ImageNet100 dataset.

Fig. 5: The model architecture serached by FINCH.

size is 50 and the iteration number for local model training is 5.
Let the initial learning rate be 0.05. We use the cossin rule as a
decay strategy for the learning rate [36]. During the training of the
supernet, we adopt Adam [37] to optimize α and momentum SGD
to optimize ω with a weight decay of 4×10−5. As suggested in
[38], in order to efficiently simulate the training processing in FL
of our proposed solution and baselines, a total of 100 edge nodes
are generated in the simulation, and 10 of them are randomly
activated to participate in the model searching and training. We
train the supernet on 10 activated clients for 100 iterations.

Datasets: To evaluate the performance of our proposed
method, we adopt two popular benchmark datasets, i.e., CIFAR10
[39] and ImageNet ILSVRC-2012 [40], for image classification.
CIFAR-10 contains a training set with 50,000 samples and a test
set with 10,000 samples. Each sample in CIFAR-10 is a 32×32×3
RGB image from 10 categories. ImageNet is a widely used dataset
for visual recognition which consists of 1,281,167 training images,
50,000 validation images and 100,000 test images from 1,000
categories, and each sample in ImageNet is a 224×224×3 image.
Considering the constrained resource on edge devices, we create
ImageNet100, a subset of ImageNet that consists of 100 out of
1,000 categories, and each image is downsized with the shape of
144×144×3.

Data Partition: In the experiments, we mainly consider the
following five different cases, including IID data and four different
levels of non-IID data, to verify the effect of data distributions on

the model searching and training performance. For IID federated
simulations, all image data are evenly and randomly distributed to
each local client without overlaps. For example, 5,000 images per
client for CIFAR10 or 17,000 images per client for ImageNet100.
To simulate various degrees of non-IID among the clients, we
adopt two types of non-IID data distributions, i.e., latent Dirichlet
allocation (LDA) and label skewed, which are well explored in
previous literature [38]. (1) LDA for CIFAR10: A ζ proportion of
the training samples on each client belong to a unique class and
the remaining 1 − ζ of the data belong to other classes (ζ= 0.1,
0.2, 0.4, 0.6 and 0.8). (2) Label skewed for ImageNet100: Each
client lacks a fraction (ζ) of 100 classes of data samples (ζ= 0,
0.1, 0.2, 0.3 and 0.4). Particularly, ζ = 0 represents uniform data
distribution. By default, the data distributions of CIFAR10 and
ImageNet100 are both non-IID-0.4, i.e., ζ = 0.4.

5.2.2 Simulation Results

We perform five groups of simulations to verify the efficiency of
our proposed framework.

1) Performance Improvement of NAS and SA-HNAS:
We first conduct a set of experiments to test the performance
improvement of NAS during federated training. The pre-defined
CNN model in HFL easily makes the training fall into the local
optimal solution, leading to low test accuracy, especially under
the non-IID setting. On the contrary, our proposed framework will
search for the proper model architecture and improve the training
performance. As illustrated in Fig. 5(a), the normal cell (e.g., conv
3×3 and conv 5×5) and the reduction cell (e.g., avg pooling
3×3) connect alternately to form the final network architecture for
the CIFAR10 dataset. Besides, the normal cell and reduction cell
searched for the ImageNet100 dateset are shown in Figs. 5(b)-5(c),
respectively. Table 4 shows that FINCH can search for a smaller
model (e.g., number of parameters and size) with a little accuracy
degradation (< 1%) compared with HFL and other classical
models, e.g., AlexNet, VGG16. Thus, the network architecture
searched by FINCH is more lightweight compared with the pre-
defined models, which allows the model to be deployed on the
resource-constrained edge clients.

TABLE 4: The model size and test accuracies of pre-defined netowrk
architectures and ours.

Model Parameter (M) Model Size (MB) Accuracy
HFL 20.6 78.5 77.8%

AlexNet 3.8 14.6 73.6%
VGG16 15.3 58.2 77.4%

ResNet18 11.2 42.6 73.2%
FINCH 3.12 11.9 76.9%

From Fig. 6, given a fixed number of iterations (e.g., 200),
the test accuracy of HFL and FINCH is about 62.6% and 68.4%,
respectively. In other words, our proposed framework can improve
the test accuracy by about 5.8% compared with the method
which adopts the pre-defined model. Besides, we test the resource
consumption of two schemes with different target accuracies. Our
proposed method with NAS will search for a smaller network

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 11

0 50 100 150 200

2.5

2.0

1.5

1.0

0.5

0.0

Lo
ss

No. of Iterations

 HFL
 Random
 FINCH

0 50 100 150 200

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

No. of Iterations

 FINCH
 Random
 HFL

Fig. 6: Loss and test accuracy of three schemes under non-IID
setting.

40 50 60 70 80
0

1

2

3

4

Ti
m

e
(G

PU
/h

)

Accuracy (%)

 FINCH
 HFL
 Random

40 50 60 70 80
30

40

50

60

70

Ba
nd

w
id

th
 (M

B
´1
0)

Accuracy (%)

 FINCH
 HFL
 Random

Fig. 7: Resource cost of two schemes with varied target accuracies.

architecture than the pre-defined model, reducing the computation
and communication cost. Fig. 7 reveals that the cost of compu-
tation and communication gradually increase with the increasing
accuracy in HFL and FINCH. However, the increasing ratio of
FINCH is slower than that of HFL. For example, given the target
accuracy of 70%, the completion time and bandwidth cost of
FINCH are about 2.2 GPU/h and 404 MB, while those of HFL are
about 2.38 GPU/h and 552 MB, respectively. FINCH can reduce
the completion time and communication cost by about 7.6%
and 26.8% compared with HFL. Thus, our proposed framework
with NAS will significantly improve the performance of model
searching and training for FL.

In order to test the effectiveness of the algorithm SA-HNAS
in FINCH, we compare it with the scheme of Random, which
randomly assign the subnet to each client cluster for model
search and training. The randomly selected subnets may not be
suitable for the client clusters, leading to a longer search time
and poor training performance under resource constraints. The test
results in Fig. 6 show that FINCH can achieve better performance,
including training loss and test accuracy, compaerd with Random.
For example, given 200 training iterations, the test accuracy of
FINCH is about 68.4%, which that of Random is about 65.2%.
In other words, FINCH can improve the accuracy performance
by about 3.2% compared with Random. In addition, the required
computing time and communication cost of FINCH is less than that
of Random. As shown in Fig. 7, FINCH can reduce the bandwidth
cost by about 22% compared with Random when achieving the
target accuracy of 80%. Thus, the experimental results reveal that
our proposed algorithm SA-HNAS in FINCH outperforms Random
in terms of training performance and resource cost.

2) Convergence Performance: In the second set of ex-
periments, we observe the performance of model convergence
under IID and non-IID data settings. We adopt CIFAR10 and

TABLE 5: Test accuracy (%) of four schemes under different data
distributions.

CIFAR10 ImageNet100
IID non-IID IID non-IID

FedNas 78.5 71.3 60.2 50.6
DecNas 77.2 67.6 57.4 46.2
OneNas 76.4 65.2 54.9 39.7
FedorAS 78.7 73.2 61.7 52.4
FINCH 80.7 76.8 64.7 55.3

ImageNet100 datasets for model searching and training. Our
proposed FINCH framework will perform more iterations com-
pared with these baselines under the same resource budgets (e.g.,
network bandwidth). As shown in Table 5, FINCH improves the
performance of model training, i.e., test accuracy, under both
IID and non-IID settings. For CIFAR10, the test accuracy of
FINCH is about 80.7%, while that of FedNas, DecNas, OneNas
and FedorAS is 78.5%, 77.2%, 76.4% and 78.7% under IID
setting, respectively. Besides, we observe that the test accuracy
of all the methods show diverse degrees of decline under the non-
IID setting. However, with efficient client clustering and subnet
allocation, FINCH outperforms the other four schemes on all
the datasets. Concretely, FINCH, FedNas, DecNas, OneNas and
FedorAS separately achieve the accuracy of 55.3%, 50.6%, 46.2%,
39.7% and 51.4% on the ImageNet100 dataset. The experimental
results significantly demonstrate the effectiveness of our proposed
FINCH framework.

TABLE 6: Resource consumption, i.e., Time (GPU/h), MACs (G),
Bandwidth (G) and Parameters (M), of four different schemes under
non-IID setting.

Time MACs Bandwidth Parameters
FedNas 1.55 0.79 4.68 5.19
DecNas 1.24 0.33 3.47 8.48
OneNas 1.62 0.46 3.88 11.75
FedorAS 1.32 0.41 3.29 7.96
FINCH 1.05 0.12 1.64 3.42

3) Resource Consumption: We observe the resource cost
(e.g., network bandwidth, FLOPs and completion time) of four
schemes given a target accuracy (e.g., 80%) under the non-
IID setting (ζ = 0.2). The CIFAR10 dataset is adopted for
model searching and training. In FINCH, the parameter server
will perform global model updating after receiving the local
updated models from all aggregators, instead of the edge clients.
Thus, FINCH requires less network bandwidth than other schemes
during model transmission. In Table 6, the bandwidth consumption
of FINCH is about 1.64 GB, while that of FedNas, DecNas,
OneNas and FedorAS is about 4.68 GB, 3.47 GB, 3.88 GB and
3.29 GB. In other words, our proposed framework reduces the
communication cost by about 64%, 52.8%, 57.7% and 50.2%
compared with the baselines, respectively. Besides, we need less
completion time to search and train the subnet in FINCH, even on
the resource-constrained edge clients. Table 6 reveals that FINCH

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 12

0.1 0.2 0.4 0.6 0.8
45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

Non-IID Level

 FINCH
 FedorAS
 DecNas
 FedNas
 OneNas

0.1 0.2 0.3 0.40
25

30

35

40

45

50

55

Ac
cu

ra
cy

 (
%

)

Non-IID Level

 FINCH
 FedorAS
 FedNas
 DecNas
 OneNas

Fig. 8: Test accuracy over the CIFAR10 and ImageNet100 datasets
with different non-IID levels.

 FedorAS
 FedorAS

Non-IID Level

Fig. 9: Resource consumption over the CIFAR10 dataset with
different non-IID levels.

can significantly reduce the completion time and computation
cost (FLOPs) compared with the baselines. For example, given
the target test accuracy of 80%, the completion time of FINCH

is about 1.05 GPU/h, while that of FedNas, DecNas, OneNas
and FedorAS is about 1.55 GPU/h, 1.24 GPU/h, 1.62 GPU/h
and 1.32 GPU/h, respectively. Thus, our proposed framework can
significantly accelerate the training process of FL.

4) Impact of non-IID Levels: The fourth set of experiments
tests the training performance (e.g., test accuracy and resource
cost) of the CIFAR10 and ImageNet100 datasets under different
non-IID levels. The results in Fig. 8 show that the test accuracy
will be degraded with the increasing non-IID level. The adaptive
client clustering according to the data distribution significantly
improves the weight divergence caused by the data drift. There-
fore, FINCH can achieve better training performance than the other
schemes, especially under a large non-IID level. For instance, the
test accuracy of FINCH is about 73.4% if the non-IID level is
0.4, while that of FedNas, DecNas OneNas and FedorAS is about
66.8%, 68.3%, 62.4% and 69.5%, with 200 iterations. In other
words, FINCH improves the test accuracy by about 6.6%, 5.1%,
11% and 3.9% compared with the four baselines, respectively.

In addition, we record the completion time and MACs of
federated training over CIFAR10 with different non-IID levels.
The results in Fig. 9 show that the completion time and MACs
of model searching and training all increase with the increasing
non-IID levels. However, the increasing ratio of our proposed
FINCH framework is much slower than that of the other schemes.
FINCH requires less completion time and MACs than FedNas,
DecNas, OneNas and FedorAS. For example, given the level of
non-IID of 0.6, the completion time of FINCH is about 2.2 GPU/h
with 200 iterations, while that of FedNas, DecNas, OneNas and
FedorAS is about 3.2 GPU/h, 2.7 GPU/h, 3.8 GPU/h and 2.4

0.5 1.0 1.5 2.0 2.5
55

60

65

70

75

80

85

Ac
cu

ra
cy

 (
%

)

Time (GPU/h)

 FINCH
 FedorAS
 FedNas
 DecNas
 OneNas

1 2 3 4 5
45

50

55

60

65

70

75

Ac
cu

ra
cy

 (
%

)

Bandwidth (GB)

 FINCH
 FedorAS
 OneNas
 DecNas
 FedNas

Fig. 10: Test accuracy over the CIFAR10 dataset with completion
time and bandwidth constraint.

GPU/h, respectively. Therefore, FINCH reduces the completion
time of model training by about 31.2%, 18.5%, 42.1% and 8.3%,
respectively. Moreover, FINCH also saves massive computation
cost (MACs), e.g., 66.3%, 55.4%, 62.5% and 45.4%, compared
with the four baselines.

5) Effect of Resource Constraints: The last set of exper-
iments tests the training performance of CIFAR10 with varied
resource constraints (e.g., bandwidth and time). Parallel search
with several subnets on the client clusters in FINCH will sig-
nificantly accelerate the process with fewer iterations compared
with FedNas, DecNas, OneNas and FedorAS, which will reduce
the bandwidth consumption and completion time of federated
training. We record the test accuracy of all schemes with different
bandwidth budgets in Fig. 10. The results show that the test
accuracy of FINCH is always better than that of the other four
baselines. For example, given the bandwidth budget of 5GB, the
test accuracy of FINCH is about 75.3%, while that of FedNas,
DecNas, OneNas and FedorAS is about 63.4%, 69.7%, 67.5% and
72.3%, respectively.

In Fig. 10, the test accuracy of all solutions will be significantly
improved with more completion time budget. However, given the
same completion time constraint, FINCH can achieve better per-
formance, i.e., higher test accuracy, than the other four schemes.
For example, the accuracy of FINCH is about 81.2%, while that of
FedNas, DecNas, OneNas and FedorAS is about 74.2%, 75.5%,
73.1% and 77.8% when the time constraint is 2 GPU/h. Thus,
FINCH can improve the test accuracy by about 7%, 5.7%, 8.1%
and 3.4% compared with FedNas, DecNas, OneNas and FedorAS,
respectively.

6 RELATED WORKS

6.1 Federated Learning
In recent years, federated learning (FL) has been widely adopted
in both academia and industry fields [22], [41]. The FL paradigm
was first proposed in [3], which coordinates multiple edge clients
to learn a globally shared model based on their local datasets.
Concretely, McMahan et al. develop the FedAvg algorithm by
combining the local stochastic gradient descent (SGD) on each
client with a server that performs synchronous model averaging
[3]. The FedAvg can decouple the model training from the need for
direct access to raw data, and the data privacy can be preserved.
However, due to the constrained resources in edge computing,
FL imposes massive computation and communication overhead,
which limits its efficiency in practical deployment. Tran et al.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 13

[42] jointly optimize the CPU frequency, transmit power and
model accuracy to minimize the weighted sum of energy cost and
learning time. Yang et al. [43] propose an iterative algorithm to
address the problem of energy-efficient transmission and compu-
tation resource allocation. Data heterogeneity (i.e., non-IID data)
is another challenge to achieving efficient training performance.
Li [44] analyzes the convergence of FedAvg on non-IID data and
establishes a convergence rate for convex and smooth problems.
Zhao [45] allows the public available data to be distributed to
clients so that the clients’ data becomes IID.

6.2 Neural Architecture Search

Originally, NAS is mostly designed to find the single most accu-
rate architecture within a large search space, without regard for
the model performance (e.g., size and computations). The works
of NAS can be divided into three categories according to the
search strategy: reinforcement learning (RL), evolutionary algo-
rithm (EA), and gradient-based (GD) [46]. Early attempts employ
evolutionary algorithms (EA) for optimizing neural architectures
and parameters. The best architecture may be obtained by iter-
atively mutating a population of candidate architectures [17]. An
alternative of EA is to use reinforcement learning (RL) techniques,
e.g., policy gradients and Q-learning, to train a recurrent neural
network. Zoph et al. [47] first adopt the RL to train a recurrent
neural network (RNN) model that generates architectures, which
is a pioneering work in the field of NAS [48]. However, EA and
RL based methods often require a large amount of computations,
which are inefficient in search. We draw inspiration from the
differentiable formulation of NAS. Among these, gradient-based
methods are the most efficient as they can finish searching in
only a few hours, compared to thousands of GPU days with other
methods.

6.3 FL with NAS

The goal of federated NAS is to generate a sequence of simplified
models from an expensive one with the best accuracy under the
resource budgets in the network. FedorAS [18] samples a one-
shot path for every client cluster based on the resource budgets
for model search and training. Nevertheless, the process of fine-
tuning or personalizing will introduce the extra computation cost.
Zhu et al. [49] propose an offline federated NAS framework using
a multi-objective evolutionary algorithm. All participating clients
must train each of the architecture of the neural network for fitness
evaluations, which significantly increases both computation and
communication costs. Client sampling can be used to alleviate
this issue, in which only subsets of participating clients contribute
to the model training. For example, all the connected clients
are divided into different groups and each sampled model uses
one group of clients for local training [50]. In addition to client
sampling, the authors in [50] also remove subsets of global models
to further reduce the communication costs. However, the test
accuracy of each global model in the list is calculated before
model aggregation, which sometimes cannot represent the real
test accuracies, especially for the cases when the clients’ data
are particularly non-IID. To alleviate this problem, He et al. [5]

propose FedNas to search for a better DNN architecture based
on the whole supernet, improving the training performance under
non-IID settings. Zhang et al. [16] advocate one-shot NAS as a
basis to deal with the non-IID problem. FINCH proposes a novel
hierarchical NAS, which can achieve better training performance
(e.g., accuracy) and convergence speed (or completion time)
within the resource budgets, especially under high-level non-IID
settings.

7 CONCLUSION

In this work, we propose the FINCH framework, which adopts
hierarchical neural architecture search (NAS) to address the chal-
lenges of non-IID data and limited network resource in edge
computing. Specifically, several subnets are sampled from the
pre-trained supernet and allocated to the proper client clusters for
model searching and training. Besides, we propose an efficient al-
gorithm, called DCSA, to perform the proper client clustering and
subnet allocation according to the data distribution and netowrk
resource. We conduct extensive experiments on the real-word
classical datasets. The results demonstrate the effectiveness of
FINCH which can significantly improve the training performance
with less resource consumption in edge computing.

REFERENCES

[1] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Towards an
intelligent edge: Wireless communication meets machine learning,” arXiv
preprint arXiv:1809.00343, 2018.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[4] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge com-
puting,” in IEEE INFOCOM 2021-IEEE Conference on Computer Com-
munications. IEEE, 2021, pp. 1–10.

[5] C. He, E. Mushtaq, J. Ding, and S. Avestimehr, “Fednas: Federated deep
learning via neural architecture search,” 2021.

[6] M. Xu, Y. Zhao, K. Bian, G. Huang, Q. Mei, and X. Liu, “Federated
neural architecture search,” arXiv preprint arXiv:2002.06352, 2020.

[7] C. He, H. Ye, L. Shen, and T. Zhang, “Milenas: Efficient neural
architecture search via mixed-level reformulation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 993–12 002.

[8] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient
push for distributed deep learning,” in International Conference on
Machine Learning. PMLR, 2019, pp. 344–353.

[9] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade. Springer, 2012, pp. 421–436.

[10] Y. Esfandiari, S. Y. Tan, Z. Jiang, A. Balu, E. Herron, C. Hegde, and
S. Sarkar, “Cross-gradient aggregation for decentralized learning from
non-iid data,” arXiv preprint arXiv:2103.02051, 2021.

[11] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[12] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 14

[14] S. You, T. Huang, M. Yang, F. Wang, C. Qian, and C. Zhang, “Greedynas:
Towards fast one-shot nas with greedy supernet,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1999–2008.

[15] X. Dong and Y. Yang, “One-shot neural architecture search via self-
evaluated template network,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019, pp. 3681–3690.

[16] F. Zhang, J. Ge, C. Wong, S. Zhang, C. Li, and B. Luo, “Optimizing
federated edge learning on non-iid data via neural architecture search,” in
2021 IEEE Global Communications Conference (GLOBECOM). IEEE,
2021, pp. 1–6.

[17] H. Zhu and Y. Jin, “Real-time federated evolutionary neural architecture
search,” IEEE Transactions on Evolutionary Computation, 2021.

[18] L. Dudziak, S. Laskaridis, and J. Fernandez-Marques, “Fedoras: Fed-
erated architecture search under system heterogeneity,” arXiv preprint
arXiv:2206.11239, 2022.

[19] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[20] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[21] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[22] J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and H. Huang,
“Adaptive asynchronous federated learning in resource-constrained edge
computing,” IEEE Transactions on Mobile Computing, 2021.

[23] N. Mhaisen, A. A. Abdellatif, A. Mohamed, A. Erbad, and M. Guizani,
“Optimal user-edge assignment in hierarchical federated learning based
on statistical properties and network topology constraints,” IEEE Trans-
actions on Network Science and Engineering, vol. 9, no. 1, pp. 55–66,
2021.

[24] Y. Li, C. Hao, X. Zhang, J. Xiong, W.-m. Hwu, and D. Chen, “Improving
random-sampling neural architecture search by evolving the proxy search
space,” 2020.

[25] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-balancing
federated learning with global imbalanced data in mobile systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 59–
71, 2020.

[26] A. Andoni, P. Indyk, and R. Krauthgamer, “Earth mover distance over
high-dimensional spaces.” in SODA, vol. 8, 2008, pp. 343–352.

[27] I. Cardoso-Pereira, G. Lobo-Pappa, and H. S. Ramos, “Neural architec-
ture search for resource-constrained internet of things devices,” in 2021
IEEE Symposium on Computers and Communications (ISCC). IEEE,
2021, pp. 1–6.

[28] B. Lyu, H. Yuan, L. Lu, and Y. Zhang, “Resource-constrained neural
architecture search on edge devices,” IEEE Transactions on Network
Science and Engineering, vol. 9, no. 1, pp. 134–142, 2021.

[29] D. Wang, M. Li, C. Gong, and V. Chandra, “Attentivenas: Improving
neural architecture search via attentive sampling,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 6418–6427.

[30] Y. Shu, W. Wang, and S. Cai, “Understanding architectures learnt by
cell-based neural architecture search,” arXiv preprint arXiv:1909.09569,
2019.

[31] B. Yuan, C. R. Wolfe, C. Dun, Y. Tang, A. Kyrillidis, and C. M. Jermaine,
“Distributed learning of deep neural networks using independent subnet
training,” arXiv preprint arXiv:1910.02120, 2019.

[32] F. Liao and A. Kyrillidis, “On the convergence of shallow neu-
ral network training with randomly masked neurons,” arXiv preprint
arXiv:2112.02668, 2021.

[33] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[34] A. M. Bongale, C. Nirmala, and A. M. Bongale, “Energy efficient
intra-cluster data aggregation technique for wireless sensor network,”
International Journal of Information Technology, pp. 1–9, 2020.

[35] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” arXiv preprint arXiv:1811.04017, 2018.

[36] C. Zhang, X. Yuan, Q. Zhang, G. Zhu, L. Cheng, and N. Zhang,
“Towards tailored models on private aiot devices: Federated direct neural
architecture search,” IEEE Internet of Things Journal, 2022.

[37] I. K. M. Jais, A. R. Ismail, and S. Q. Nisa, “Adam optimization algorithm
for wide and deep neural network,” Knowledge Engineering and Data
Science, vol. 2, no. 1, pp. 41–46, 2019.

[38] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 2020, pp.
1698–1707.

[39] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol.
115, no. 3, pp. 211–252, 2015.

[41] P. Zhou, Q. Lin, D. Loghin, B. C. Ooi, Y. Wu, and H. Yu,
“Communication-efficient decentralized machine learning over hetero-
geneous networks,” arXiv preprint arXiv:2009.05766, 2020.

[42] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM 2019-IEEE conference on computer
communications. IEEE, 2019, pp. 1387–1395.

[43] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935–1949, 2020.

[44] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[45] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[46] H. Zhu, H. Zhang, and Y. Jin, “From federated learning to federated
neural architecture search: a survey,” Complex & Intelligent Systems,
vol. 7, pp. 639–657, 2021.

[47] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in International conference
on machine learning. PMLR, 2018, pp. 4095–4104.

[48] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–34,
2021.

[49] H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning,”
IEEE transactions on neural networks and learning systems, vol. 31,
no. 4, pp. 1310–1322, 2019.

[50] M. Xu, Y. Zhao, K. Bian, G. Huang, Q. Mei, and X. Liu, “Neural archi-
tecture search over decentralized data,” arXiv preprint arXiv:2002.06352,
2020.

Jianchun Liu received the Ph.D. degree in
School of Data Science from the University of
Science and Technology of China in 2022. He is
currently an associate researcher in the School
of Computer Science and Technology at Univer-
sity of Science and Technology of China. His
main research interests are software defined
networks, network function virtualization, edge
computing and federated learning.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., JUN. 2023 15

Jiaming Yan received B.S. degree in 2021 from
Hefei University of Technology. He is currently
studying for a master’s degree in the School of
Computer Science, University of Science and
Technology of China (USTC). His main research
interests are edge computing, deep learning and
federated learning.

Hongli Xu (Member, IEEE) received the B.S.
degree in computer science from the University
of Science and Technology of China, China, in
2002, and the Ph. D degree in computer soft-
ware and theory from the University of Science
and Technology of China, China, in 2007. He
is a professor with the School of Computer Sci-
ence and Technology, University of Science and
Technology of China (USTC), China. He was
awarded the Outstanding Youth Science Foun-
dation of NSFC, in 2018. He has won the best

paper award or the best paper candidate in several famous conferences.
He has published more than 100 papers in famous journals and con-
ferences, including the IEEE/ACM Transactions on Networking, IEEE
Transactions on Mobile Computing, IEEE Transactions on Parallel and
Distributed Systems, Infocom and ICNP, etc. He has also held more than
30 patents. His main research interest is software defined networks,
edge computing and Internet of Thing.

Zhiyuan Wang received the B.S. degree from
the Jilin University in 2019. He is currently study-
ing for a master’s degree in the School of Com-
puter Science, University of Science and Tech-
nology of China (USTC). His main research in-
terests are edge computing, deep learning and
federated learning.

Jingyang Huang received the B.Eng. degree
from Anhui University in 2017 and the Ph.D. de-
gree at the School of Cyberspace Security from
University of Science and Technology of China
in 2022. Now, he is a Lecturer at the School
of Computer Science and Information Engineer-
ing, Hefei University of Technology (HFUT), and
a member of the HFUT-S2AC Group. His re-
search interests lie in Human-computer interac-
tion, Wireless sensing, Wireless communication,
and Machine learning.

Yang Xu (Member, IEEE) is currently an as-
sociate researcher in the School of Computer
Science and Technology at University of Science
and Technology of China. He got his Ph.D. de-
gree in computer science and technology from
University of Science and Technology of China
in 2019. He got his B.S. degree in Wuhan Uni-
versity of Technology in 2014. His research inter-
ests include Ubiquitous Computing, Deep Learn-
ing and Mobile Edge Computing.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3315451

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on October 08,2023 at 14:32:39 UTC from IEEE Xplore. Restrictions apply.

