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Abstract—Cognitive load recognition is of great significance to
the study of emotional health, as excessive cognitive load not only
impairs work and learning efficiency but also leads to mental
pressure and fatigue, affecting overall well-being. Advances in
wearable technology and understanding the role of physiological
signals in assessing human health have enabled the possibility of
cognitive load recognition using these signals. This work proposes
a framework that combines multiple physiological signals (ECG,
EDA, and PPG) collected through wearable sensors for cognitive
load recognition. Heart rate variability (HRV) features are
extracted from ECG signals, while statistical characteristics are
extracted from EDA and PPG signals. The RFECV feature
selection algorithm is utilized in the feature selection module to
achieve optimal feature subset selection and redundant feature
removal. The classification of cognitive load states is implemented
based on the ASAPSO-LightGBM(Adaptive Simulated Annealing
Particle Swarm Optimization-Light Gradient Boosting Machine)
machine learning model. We validated the effectiveness of the
framework on two publicly available datasets (MAUS and WE-
SAD). Experimental comparisons of feature combinations and
machine learning models demonstrate that the proposed frame-
work achieves superior performance, with recognition accuracy
of 98.52% and 88.38% on the two datasets, respectively.

Index Terms—cognitive load recognition, multimodal physio-
logical signals, feature selection, machine learning, parameter
optimization

I. INTRODUCTION

Mental health is an essential component of physical health,
and mental health disorders can affect our mood, thinking, and
behavior. Cognitive load has been an increasingly important
theoretical concept in human mental health research in recent
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years. The cognitive load includes mental load and mental
effort. The mental load is imposed based on the amount
of information provided, while mental effort is the mental
capacity that must be assigned to the information [1]. Humans
have a limited cognitive load capacity for work and learning.
It has been shown that learning ability is impaired when a task
exceeds the cognitive load capacity of the learner [2] [3]. The
common cognitive load measures currently available include
subjective measures, task performance measures, and physio-
logical signal measures. Subjective measures are susceptible
to subjective factors, and task performance may be influenced
by multiple factors, such as cognitive ability and intelligence
level, that cannot visually reflect changes in cognitive load.
Physiological signals have received much attention in recent
years because they can visually reflect the real-time state of
the human body in response to external stimuli. Physiological
signal measures are able to assess a person’s cognitive load,
and many previous studies have confirmed these indicators
as a proxy for cognitive load [4]. Most existing studies have
collected evidence for the construct validity of these metrics
by manipulating the difficulty and complexity of the task and
have shown the high sensitivity of physiological metrics in
detecting individual differences in cognitive load [5].

The proliferation of wearable sensors and devices has dra-
matically facilitated the acquisition and analysis of physio-
logical signals. With tiny, accurate, and low-cost sensors, it
can be used to track people’s activities and collect biometric
signals in real-time, providing sufficient data for task analysis.



In addition, machine learning methods with excellent data
processing and analysis capabilities can help analyze cognitive
load situations from physiological signals quickly and pro-
vide reliable results. All these provide suitable conditions for
cognitive load measurement based on physiological signals.
However, the critical question is how to combine physiological
signal features with machine learning to achieve a good
cognitive load recognition effect.

The common physiological signals used to analyze human
mental states mainly include electrodermal activity (EDA),
electrocardiogram (ECG), photoplethysmograph(PPG), respi-
ration (RSP), electroencephalogram (EEG), and electromyo-
gram (EMG). These signals can provide much information
about the individual’s mental state, such as anxiety, depression,
and fatigue. In [6], the authors used information on heart
rate variability (HRV) extracted from ECG signals to analyze
the fatigue and non-fatigue states of orchard workers before
and after work. They concluded that some HRV parameters
differed significantly in fatigue and non-fatigue states. The
effect of surgical treatment, a stimulus, on anxiety and de-
pression in cancer patients was confirmed in [7], where HRV
parameters played an important role. Reference [8] achieved
major depression detection based on EDA and support vector
machine-recursive feature elimination (SVM-RFE) method
with an accuracy of up to 74%. Reference [9] used multiple
deep neural network models based on EDA for emotion
recognition to validate the performance of each model on
emotion recognition. Among them, the CNN model achieved
the best performance, with an average accuracy of 86.73% in
valance and 86.92% in arousal. In [10], the authors trained a
one-dimensional convolutional neural network using single-
pulse features extracted from PPG signals to achieve the
detection of short-term emotions, and the method achieved
accuracies of 75.3% and 76.2% for valence and arousal states,
respectively. In addition, the combination of multiple physio-
logical signals is also a commonly used method. Multimodal
physiological signals have more joint features and therefore
have the potential to provide better performance than single
signals. Reference [11] used a wristband device to record data
from blood volume pulses (BVP), EDA, TEMP, and ACC to
train a stress detection model. In [12], ECG, RESP, EDA,
and EMG data were used to detect the emotional response
of the human body to music. In [13], the authors used EDA,
PPG, EEG, and pupil size to assess the level of anxiety of the
driver’s face under different road conditions.

In this work, we propose a framework for cognitive load
recognition based on multimodal physiological signal fusion.
High and low cognitive load states are recognized using multi-
modal physiological signals of EDA, ECG, and PPG collected
from wearable sensors. First, heart rate variability (HRV) is
estimated from the pre-processed ECG signal, from which
time domain and frequency domain features and nonlinear
features are extracted, and statistical features are extracted
from the EDA and PPG signals. After that, the selection and
fusion of multimodal features are implemented based on the
RFECYV algorithm to remove redundant features from the high-
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Fig. 1. Description of ECG signal components

dimensional features. Finally, the LightGBM machine learning
model and the adaptive simulated annealing particle swarm
optimization algorithm are used to realize the classification
and parameter optimization schemes for cognitive load state
recognition, respectively. Two publicly available datasets are
used for training and testing the framework. The experimental
results show that the framework achieves 16.68% higher
recognition accuracy than the baseline model in MAUS and
5.4% higher than that in WESAD.

The main contributions of this work are summarized as
follows: (1) A cognitive load recognization framework based
on multimodal physiological signal fusion and machine learn-
ing is proposed to achieve an accurate assessment of high
and low cognitive load levels. (2) The RFECV algorithm is
used to achieve the selection and fusion of high-dimensional
features of physiological signals, and the extracted feature
subset has the best performance in recognizing cognitive
load by comparing the results with those of other feature
combinations. (3) A parameter optimization method for the
LightGBM model based on an adaptive simulated annealing al-
gorithm (ASAPSO) is proposed,which can effectively improve
the performance of the LightGBM model on cognitive load
recognition. The experimental results show that the ASAPSO-
LightGBM model performs better than the other five machine-
learning models.

The rest of the paper is organized as follows: Section II
discusses the features of the three signals used in this work
and the dataset used for model training. Section III describes
our overall approach, Section IV presents the analysis and dis-
cussion of the experimental results, and Section V concludes
this work.

II. PHYSIOLOGICAL SIGNAL DATA

As described in the previous section, physiological signals
have been widely used in the study of human mental state
recognition. The basic principle is that fluctuations in the
mental state will have an impact on the indicators of human
physiological signals. We can study the transformation of
the human mental state by analyzing the changes in these
indicators. In this study, we focused on three signals: ECG,
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Fig. 2. Overall method flow chart

EDA, and PPG. [18].In addition, heart rate variability (HRV)
can be calculated from PPG signals as well, which is why
PPG signals are often combined with ECG signals in many
affective computing studies. In summary, we selected three
physiological signals that are closely related to changes in
human mental states for the identification of human cognitive
load levels.

A. Electrocardiogram, Electrodermal activity, Photoplethys-
mograph

The ECG signal captures the change in cardiac potential
over time, showing a quasi-periodic behavior consisting of a
series of heartbeats [14]. Each beat consists of three waves, a
P-wave, a QRS complex, and a T-wave, as shown in Figure
1. QRS detection can be used as a starting point for ECG
feature extraction by detecting successive R-peaks (positive
peaks of the QRS complex), which can extract the RR interval.
Heart rate variability (HRV) reflects the variability of ECG
adjacent R-wave intervals, and the RR interval itself can be
used to analyze heart rate variability, which provides important
information about cardiovascular behavior, which may be
influenced by factors such as the health and emotional/mental
state of the subject [14]. Numerous studies have shown that
heart rate (HR) and heart rate variability (HRV) can distinguish
different mental states. The time-frequency analysis of HRV
reveals that HRV can differentiate whether a subject is in a
normal or mentally fatigued state [15].

When our organism is subjected to sensory stimuli or emo-
tional changes, it secretes large amounts of sweat, which alters
skin conductance, a property known as EDA or GSR. Dermal
electrical activity can respond very quickly and sensitively to
the degree of impact of a stimulus event on an individual.
Therefore, EDA can be used as a physiological indicator to
detect mood changes [16]. The EDA signal is divided into
two main components, including the Tonic Data and the Phasic

Data composition. Skin conductance level (SCL) is the most
commonly used method to measure the Tonic component.
Related studies have shown that changes in SCL are related
to an individual’s level of autonomic arousal, such as the
general level of emotion and stress. Because the SCL changes
slowly, the measurement time needs to be long enough.
Phasic Data refers to the rapidly changing component caused
by sympathetic activity and is also considered as the skin
conductance response (SCR). The SCR is a state of activation
of physiological and psychological caused by stimuli that can
be visualized as rapid fluctuations and large wave amplitudes
in the electrodermal signal.

Finally, the PPG signal is a noninvasive method to detect
changes in blood volume caused by cardiac activity [17].PPG
has a periodic pulse consisting of systolic and diastolic phases.
Some studies have shown that certain properties of the PPG
signal can provide information about the level of mental stress

B. Datasets

Two publicly available datasets, MAUS [19] and WESAD
[20], were used in this study. Physiological signal data from
both datasets were collected using wearable sensors. In partic-
ular, the MAUS dataset recorded ECG, GSR, and PPG signals
at a sampling rate of 256 Hz, and data were recorded from a
total of 22 participants. The MAUS dataset used a series of
N-Back tasks (0-Back, 2-Back, and 3-Back) to elicit different
cognitive load levels and statistically validated the difference
between 0-Back and 2-Back and 3-Back induced significant
differences in cognitive load levels. Therefore, we assigned a
low cognitive load label to the data during the 0-Back task
and a high cognitive load label to the data during the 2-
Back and 3-Back tasks. The WESAD dataset was designed
for the detection of cognitive stress and emotion, with multiple
physiological signal information collected via the wrist-worn
device and the chest-worn device. Seventeen participants were
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Fig. 3. The physiological signals before and after pre-processing of the WESAD dataset

asked to read magazines, give public speeches, and count
numbers to induce different cognitive stressors. In this study,
we obtained data labels by treating the baseline phase of
reading magazines as a low cognitive load phase and the phase
of making speeches and counting numbers as a high cognitive
load phase.

III. METHODOLOGY

The proposed framework includes the processing steps de-
tailed in the following sections. The overall method flowchart
is shown in Figure 2. Experimental data are obtained from
publicly available multimodal physiological signal datasets,
from which we receive raw ECG, EDA, and PPG signal
recordings. A pre-processing operation is performed on the
raw data to obtain physiological signal time segments that can
be used for feature extraction. The feature extraction method
will then be used to extract these physiological signals to get
signal features initially. The feature selection module further
eliminates redundant features. Finally, the selected results
will be fed into a machine learning model for training. We
compared different machine learning algorithms (SVM, DT,
RF, XGBoost, LightGBM), from which the best performing
model was selected. At the same time, parameter optimization
was performed to obtain the final solution to achieve an
accurate classification of cognitive load levels.

A. Pre-processing

a) Upsampling: The ppg signal in WESAD comes from
a wrist-worn device with a sampling frequency of 64hz, while
a chest-worn device sampling collects the ECG and EDA
signals at a frequency of 700hz. This results in the ppg signal
having a shorter time series length than the ECG and EDA
signals. Therefore, before performing all the pre-processing
operations, we implemented the upsampling process of the
ppg signal using the scipy library of Python.

b) Segmentation: Segmentation is an essential step in
data processing. Raw physiological signal data were collected
during prolonged activity. After the signal is segmented, the
processing efficiency will be higher. At the same time, dividing
the signal into shorter segments can increase the data volume
to achieve better results in training machine learning models.
In our study, we applied a two-minute sliding window to split
all signals into segments of two minutes in length.

¢) Filtering and processing: The original ECG signal
was filtered with a Butterworth bandpass filter to remove
interference such as muscle noise, power line noise, and
baseline drift. The passband frequency was set to 5-15 Hz.
After that, the R-peaks were obtained using the Pan-Tompkins
(PT) peak detection algorithm [21] [22], which will be further
used for the analysis of HRV. The EDA signal was filtered
using a Butterworth low-pass filter with a cutoff frequency of
3 HZ, which can remove most motion artifact noise. In order to
extract richer EDA features, the EDA signal is next component
separated using the cvxEDA model [23] to distinguish the
SCL and SCR components. As for the processing of the
PPG signal, we used a bandpass filter of 0.5-8hz to process
it, while the Elgendi algorithm [24] was used afterward to
detect the peak systolic pressure to get the PPG rate. The
statistical features will be calculated from the obtained PPG
rate. Taking the WESAD dataset as an example, Figures 3
show the physiological signals before and after pre-processing.

B. Feature extraction

With the preprocessing step, we have the conditions to
derive the HRV from the ECG signal. Next, we performed
a time-frequency domain analysis and a nonlinear analysis of
the HRV. Seven time-domain features were extracted. Three
frequency-domain features (LF, HF, TF) and three relative
frequency-domain features (LFn, HFn, LF/HF) were extracted
using band power of different frequency ranges. In addition,
three nonlinear features were also incorporated into our study.
The time and frequency domain analysis metrics of HRV
can quantitatively reflect the heart rate variability at different
time scales, while the nonlinear analysis metrics of HRV
can quantitatively reflect the structure and complexity of
the R-R intervals (RRI) [25]. The HRV feature parameters
and definitions are shown in Tables I-IIl. As for the EDA
signal, we extracted statistical features (maximum, minimum,
mean, standard deviation) and features related to SCL/SCR
(number of SCR occurrences, mean amplitude of SCR peak
occurrences, SCR-mean, SCR-standard deviation, SCL-mean,
SCL-standard deviation) according to the method given in
[20]. Since the PPG signal is highly correlated with the ECG
signal, we have extracted the HRV features of the ECG signal
earlier, so only the statistical features (maximum, minimum,



TABLE I TABLE III
THE DEFINITION OF PARAMETER INDICES FOR TIME-DOMAIN ANALYSIS THE DEFINITION OF PARAMETER INDICES FOR NONLINEAR ANALYSIS OF
OF HRV HRV
Paral.neter Definition
Parameter Definition Indices
Indices SD1 Index of short-term HRV changes.
AVNN The mean of the R-R intervals. SD2 Index of long-term HRV changes.
SDNN The standard deviation of the RR intervals. The ratio of SDI1 to SD2. Describes the ratio of short-
- SD1/SD2 . :
The square root of the mean of the squared successive term to long term variations in HRV.
RMSSD . . .
differences between adjacent RR intervals.
NN50 The proportion of RR intervals greater than 50ms, out of
p the total number of RR intervals.
SDSD The standard deviation of the successive differences TABLE 1V
between RR intervals. OPTIMIZED PARAMETERS AND THEIR VALUE RANGES
The baseline width of the RR intervals distribution ob- ‘
TINN tained by triangular interpolation, where the error of least Parameter Parameter Meaning Value Ranges
squares determines the triangle. learning_rate Learning rate for model training. [0.001,0.2]
The HRV triangular index, measuring the total number n_estimators Number of iterations for model [100,1200]
HTI of RR intervals divided by the height of the RR intervals training.
histogram. max_depth The maximum depth of the tree (3,12]
model.
num_leaves The number of leaf nodes in a tree. | [1,2a@-depth)
TABLE II E@Tatu're_frfa'ctlt(')n iﬁe gec;ture sar;lphng;atlo. EggH
THE DEFINITION OF PARAMETER INDICES FOR FREQUENCY-DOMAIN asgIng_Iraction c data samp 1ng ratio. —
lambda_L1 L1 regularization parameter. [le-5,3)
ANALYSIS OF HRV —
lambda_1.2 L2 regularization parameter. [1e-5,3)

Parameter . Frequenc
Indices Definition b(:lnd '
LF The spectral power of low frequencies. | 0.04-0.15Hz
HF The spectral power of high frequencies. 0.15-0.4Hz
TF The total power. 0-0.4Hz
The ratio obtained by dividing the low-
LF/HF frequency power by the high-frequency /
power.
The normalized low frequency, ob-
LFn tained by dividing the low-frequency /
power by the total power.
The normalized high frequency, ob-
HFn tained by dividing the low-frequency /
power by the total power.

mean, standard deviation, median) of the PPG signal were
extracted here.

C. Feature selection

In the feature extraction module, we extracted 31-
dimensional physiological signal features. High-dimensional
attributes not only increase the overhead of model training
but also some redundant features can negatively affect the
classification accuracy. Therefore, we utilize the Recursive
Feature Elimination and Cross Validation (RFECV) algorithm
to perform feature filtering to obtain the best feature subset.

RFECV is a heuristic feature selection method that adds
a cross-validation step to the RFE algorithm. The first step
is recursive feature elimination. All features in the complete
feature set are fed into the model for training, the importance
of each feature is obtained and ranked, and the feature set
is updated by removing the least important features from
the current set of features. Then, a new round of training
learning and rating calculation is performed on the feature
set until it recursively completes rating the importance of all
features. Then, different numbers of features are selected from
the complete feature set in turn to construct feature subsets

according to the feature importance ratings eliminated by
the recursive features.Cross-validation is performed on each
feature subset separately to obtain the average performance
score of each feature subset. Finally, the best feature subset
and the number of features are determined based on the feature
subset with the highest cross-validation accuracy.

D. Machine learning and parameter optimization

The filtered optimal feature subset is fed into the ma-
chine learning module for training. The proposed ASAPSO-
LightGBM model was compared with five other machine
learning models (LightGBM, XGBoost, RF, DT, and SVM)
To validate the classification effect. We trained and tested
the models using five-fold cross-validation, and the final
evaluation results were averaged.

a) LightGBM: GBDT (Gradient Boosting Decision Tree)
is an iterative decision tree algorithm whose main idea is to
iteratively train weak classifiers (decision trees) to obtain the
optimal model, which has the advantages of excellent training
effect and less overfitting. LightGBM (Light Gradient Boost-
ing Machine) is a framework for implementing the GBDT
algorithm, which supports efficient parallel training. Compared
with GDBT, which requires multiple iterations of the entire
dataset during training and puts the whole dataset into memory,
the LightGBM model supports parallel training and distributed
processing of large amounts of data. The LightGBM saves the
discretized values of features so as to occupy less memory,
which solves the problem of GBDT being time-consuming
when processing large amounts of data. Several decision tree
models are integrated into LightGBM, and the final model is
approximated by iterative training with the formula calculated



as:
N

fla) =T (x;6,) (1

t=1

where T (x;0;) is a single decision tree, N denotes the total
number of iteration rounds (number of decision trees), and 6,
is a decision tree parameter.

b) ASAPSO algorithm: After training the machine learn-
ing models, the ASAPSO (Adaptive Simulated Annealing
Particle Swarm Optimization) algorithm [26] is used to op-
timize the performance of the LightGBM model to maximize
the model’s classification performance. Since the LightGBM
model has a huge number of parameters, an inappropriate
combination of parameters can cause the model to fall into
a local optimum, which affects the model’s classification
accuracy and may also cause the model to be overfitted.
ASAPSO can solve this problem very well. The algorithm is
based on the improvement of the particle swarm optimization
algorithm by introducing a simulated annealing operation in
the particle search process, setting a temperature 7, according
to the initial state of the population, and decaying with a
specific cooling factor y after each iteration as follows:

T(k) = { E (Gpest) [10g(0.2), k=1

T(k — 1), k> 1 @
where k is the number of iterations, Gpes: represents the
current global optimal position of the particle seeking, and
E(Gpest) represents the optimal fitness value of the particle
(the fitness value corresponds to the classification accuracy of
the model in our study). In addition to maintaining the global
optimal position Gp.ss, €ach particle ¢ has to hold its own
individual optimal position Py, ;. The change of temperature
guides the population to accept the current solution with a
certain probability, which ensures the ability of the particle
to jump out of the local optimal solution.The acceptance
probability is calculated by:

_ { 1; El(k) Z E(Gbest) (3)

pi = exp(—%fg"””), Ei(k) < E(Gpest)
E;(k) represents the fitness value of the ith particle after
the kth iteration. At the same time, according to the number

of iterations, the algorithm can adaptively adjust the inertia
weights w as:

W =(Wmaz + Wmin)/2 + tanh(—4 + 8%

“)
(kmaar - k)/kma:c)(wmaac - w'min)/2
and adjust learning factors cl and c2 as:
C1 = Clmaz — k(clmaaz - Clmin)kmaw (5)
C2 = Comin — k(CZmin - C2ma$)kmax (6)

the parameters with subscripts max and min represent the
maximum and minimum values selected for this parameter,
and the parameters are assigned according to the method given
in [21]. Next, the particle will update its evolutionary speed

v;(k + 1) and position x;(k + 1) according to the parameters
given above:

v;(k 4+ 1) = wo; (k) 4+ 171 (Ppest,i (k) — z:(k))
+ cor2(Gpest — xi(k))

(7

After the velocity and position of individual particles are
updated, the global optimal position of the corresponding
particle population may also be changed according to (3). The
optimal position of the particle population will be obtained
after all the iterations are completed. In this study, we use the
ASAPSO algorithm to find the optimal position for the eight
main parameters of LightGBM. The cross-validation accuracy
of the model is used as the particle fitness value, and the final
obtained optimal positions of the particles are assigned to the
model parameters. The optimized parameters and their value
ranges are shown in Table IV.

IV. RESULTS AND DISCUSSION

The experimental results will be presented and discussed
in this part, and the two evaluation indexes of accuracy
and Fl-score will be selected to evaluate the results. To
verify the effect of the proposed framework, we compared
the performance of the feature combination based on the
three physiological signals with the optimal feature subset
based on the RFECYV algorithm on the cognitive classification.
Meanwhile, the performance of six machine learning models
was compared. Figures 4 shows the cross-validation accuracy
of each model as a function of the number of features during
feature selection on the MAUS and WESAD datasets. The
LightGBM model with feature selection performed best on the
two datasets, and the optimal number of feature subsets was
19 and 9, respectively. Tables V and VI show the experimental
results of the proposed method on the two datasets. As can be
seen from the tables, our method achieves 98.52% recognition
accuracy on the WESAD dataset, which is the best accuracy
for this study. This result is 5.4% higher than the best result
achieved in the baseline. Our method also performs better than
the baseline of MAUS, with 16.68% higher accuracy.

The experimental results show that the model based on full
features performs better than that on the unimodal features in
general but not necessarily better than the bimodal model. The
complete feature set has a limited advantage over the bimodal
features since it contains the largest number of redundant
features. The feature subset after feature selection by the
RFECYV algorithm has the highest recognition accuracy, which
confirms that the RFECV feature selection method can effec-
tively reduce the feature dimensionality as well as improve
the accuracy of cognitive load recognition. The LightGBM
model shows the best performance among all machine learning
models, and the ASAPSP algorithm further enhances this
advantage, which illustrates the effectiveness of the method.

Furthermore, the table shows that the recognition accuracy
of the proposed framework on WESAD is significantly better
than that on MAUS. This is because the devices used to collect
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Fig. 4. Results of feature selection using the RFECV algorithm

TABLE V
COMPARISON OF EXPERIMENTAL RESULTS OF MAUS DATASET

Model ALL! ECG EDA PPG ECG+EDA | ECG+PPG | EDA+PPG | SF(n_feature)?
SVM Accuracy | 0.7633 | 0.7698 | 0.6644 | 0.7763 0.7545 0.7720 0.7391 0.7785(15)
Fl1-score 0.7629 | 0.7688 | 0.6638 | 0.7760 0.7544 0.7717 0.7385 0.7776
DT Accuracy | 0.7852 | 0.7633 | 0.7017 | 0.7610 0.7567 0.7566 0.7894 0.8071(15)
Fl1-score 0.7748 | 0.7581 0.6960 | 0.7577 0.7544 0.7511 0.7682 0.7996
RF Accuracy | 0.8444 | 0.8247 | 0.7960 | 0.8225 0.8401 0.8378 0.8487 0.8575(29)
Fl-score 0.8434 | 0.8237 | 0.7955 | 0.8218 0.8395 0.8375 0.8478 0.8567
XGBoost Accuracy | 0.8465 | 0.8006 | 0.7698 | 0.8115 0.8203 0.8115 0.8487 0.8532(15)
F1-score 0.8456 | 0.7998 | 0.7670 | 0.8108 0.8197 0.8111 0.8478 0.8526
LightGBM Accuracy | 0.8510 | 0.7962 | 0.7808 | 0.8004 0.8576 0.8203 0.8618 0.8684(24)
Fl-score 0.8506 | 0.7950 | 0.7799 | 0.8014 0.8570 0.8198 0.8615 0.8680
. Accurac 0.8633 | 0.8043 | 0.8020 | 0.8105 0.8587 0.8238 0.8832 0.8838(24)
ASAPSO-LightGBM |1 (%076 | 0.8009 | 0.8096 | 0.8369 0.8220 0.8813 0.3818
Baseline Accuracy 0.7170
F1-score 0.6900
I ALL: The combination of all features of ECG, EDA, PPG signals.
2 SF: The combination of features selected by RFECV. (n_feature: the number of selected features)
TABLE VI
COMPARISON OF EXPERIMENTAL RESULTS OF WESAD DATASET
Model ALLT ECG EDA PPG ECG+EDA | ECG+PPG | EDA+PPG | SF(n_feature)?
SVM Accuracy | 0.9429 | 0.9286 | 0.9095 | 0.8476 0.9524 0.9095 0.9429 0.9722(3)
Fl-score 0.9377 | 0.9224 | 0.9011 0.8334 0.948 0.9004 0.9373 0.969
DT Accuracy | 0.9238 | 0.8952 | 0.9048 | 0.8286 0.9286 0.9095 0.8857 0.9381(7)
F1-score 09116 | 0.8969 | 0.8994 | 0.8018 0.9274 0.8997 0.8752 0.9306
RF Accuracy | 0.9524 0.919 0.919 0.8714 0.9524 0.9238 0.9429 0.9714(27)
Fl1-score 0.9472 | 0.9123 | 0.9098 | 0.8583 0.9472 0.915 0.9363 0.9651
XGBoost Accuracy | 0.9386 | 0.9285 0.919 0.8667 0.9333 0.9333 0.9381 0.9571(4)
F1-score 0.932 0.9211 09114 | 0.8521 0.9272 0.9259 0.9326 0.9502
LightGBM Accuracy 0.9704 | 0.9556 0.963 0.8926 0.963 0.9556 0.963 0.9775(9)
Fl1-score 0.9703 | 0.9536 | 0.9629 | 0.8923 0.9629 0.9552 0.9629 0.9771
. Accurac 0.978 0.9632 | 0.9711 0.8997 0.9706 0.9633 0.9712 0.9852(9)
ASAPSO-LightGBM |1 5639 [ 0.9708 | 08995 | 0.9703 0.9631 0.97T 0.9849
Baseline Accuracy 0.9312
F1-score 0.9147

I ALL: The combination of all features of ECG, EDA, PPG signals.

2 SF: The combination of features selected by RFECV. (n_feature: the number of selected features)



the WESAD signals contain wearable sensor devices, while
the devices used for MAUS are wristband or fingertip devices.
Since participants need to maintain interaction with the com-
puter during the experiment, devices worn on the hand are
more likely to generate artificial noise due to hand movement,
even if it is a slight movement, which will affect the quality
of signal acquisition and eventually lead to unsatisfactory
results in the classification model. Even so, we still achieved a
recognition accuracy close to 90%. In summary, the proposed
framework of cognitive load recognition based on multimodal
physiological signals can achieve accurate recognition of high
and low cognitive loads.

V. CONCLUSION

In this paper, a framework for cognitive load recognition
based on multimodal physiological signals is proposed. The
framework consists of four modules: physiological signal pre-
processing, feature extraction, feature selection based on the
RFECYV algorithm, and cognitive load classification based on
the ASAPSO-LightGBM model. We fuse three physiological
signals related to human mental states and select key features
from them to form the optimal feature subset and optimize
the best-performing LightGBM model using the ASAPSO al-
gorithm. Two publicly available affective datasets, MUAS and
WESAD, were used to validate the effect of the framework.
The framework achieves an accuracy of up to 98.52% for the
recognition of cognitive load level, outperforming the results
of the two baseline works referenced in this paper.
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