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Abstract—Human activity recognition (HAR) has become
increasingly essential due to its potential to support a broad
array of applications, e.g., elder care, and VR games. Recently,
some pioneer WiFi-based HAR systems have been proposed due
to its privacy-friendly and device-free characteristics. However,
their crucial limitation lies in ignoring the inevitable impact of
co-channel interference (CCI), which degrades the performance
of these HAR systems significantly. To address this challenge,
we propose PhaseAnti, a novel HAR system to exploit the CCI-
independent phase component, NLPEV (Nonlinear Phase Error
Variation), of Channel State Information (CSI) to cope with
the impact of CCI. We provide a rigorous analysis of NLPEV
data with respect to its stability and otherness. Validated by
our experiments, this phase component across subcarriers is
invariant to various CCI scenarios, while different for distinct
motions. Based on the analysis, we use NLPEV data to perform
HAR in CCI scenarios. Extensive experiments demonstrate
that PhaseAnti can reliably recognize activity in various CCI
scenarios. Specifically, PhaseAnti achieves a 95% recognition
accuracy rate (RAR) on average, which improves up to 16%
RAR in the presence of CCI. Moreover, the recognition speed
is 9× faster than the state-of-the-art solution.

I. INTRODUCTION

A. Backgrounds and Motivations

Human activity recognition (HAR) is the core technol-
ogy that enables novel applications in different areas, such
as health care, entertainment, and security [1]. Traditional
approaches use cameras [2], [3] and wearable sensors [4],
[5] to perform HAR. However, camera-based approaches
have the fundamental limitations of requiring enough light,
and the privacy leak problem cannot be ignored. Wearable
sensor-based methods are inconvenient sometimes since the
sensors have to be worn on the users’ body. Recently, WiFi-
based HAR systems [6]–[11] have been proposed. WiFall [7]
exploited the unique diversity of Channel State Information
(CSI) to detect human fall in the indoor environment. QGes-
ture [11] used CSI values to measure the movement distance
and direction of human hands. Their crucial advantages over
camera-based and sensor-based methods are that they do not
need lighting, preserve user privacy, operate through walls,
and do not require users to carry any devices as they rely
on the signals reflected by the human body.

However, the key limitation of these WiFi-based HAR sys-
tems is that they ignore the effects of co-channel interference
(CCI), which leads to a sharp drop in the performance under
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Fig. 1 Indoor environment of electromagnetic.

CCI scenarios. Unfortunately, CCI becomes more common
since the number and types of WiFi devices have proliferated
in the last decade and often varies due to channel hopping
mechanism [12]. Thus, it is almost impossible to find a
channel that is clean or only occupied by one node within
the signal coverage. For instance, Fig. 1 shows that the
mobile phone receives multiple router signals in one place,
but the spectrum of some router channels is overlapped with
the connection channel. Thus, the CCI happens. Moreover,
CCI has severe negative impacts on WiFi signals, i.e., the
confusion of signal amplitude [13], [14], and the subcar-
rier correlation weakens [15], which finally results in the
degradation of HAR system performance. Therefore, an anti-
interference HAR system to recognize motions accurately in
CCI scenarios is necessary and valuable.

B. Challenges and Contributions

Indeed, for an anti-interference HAR system, the signal
component used for recognition should be invariant across
different CCI scenarios and time, but sensitive and distinct
for different motions. If the signal component itself changes
with CCI, it is difficult to extract the only motion-related part
from this signal component. However, the CSI amplitude
used by most WiFi-based HAR systems [6]–[10] is varying
in CCI scenarios since different nodes within the signal
coverage adjust its sending power to better compete for
the channel [15]. Thus, CSI amplitudes do not satisfy the
requirement of the anti-CCI signal component. Fortunately,
CSI phases are not affected by the varying transmission
power caused by CCI. Therefore, the CCI-independence
component can be extracted from the CSI phase. Besides,
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to satisfy the universal property, the anti-interference HAR
system should be deployable on existing infrastructure. Fur-
thermore, the low time delay is also an essential requirement
for HAR systems, and it is inappropriate to spend too much
signal processing time to reduce the impact of CCI.

Thus, three challenges need to be formally addressed
before realizing a novel anti-CCI CSI-based HAR system.
• Stable signal component vs. Varying CSIs: The CSI

amplitude used by most pioneer HAR systems is vary-
ing with the CCI change. Besides, due to the significant
variations caused by noises, and the unsynchronized
time and frequency at transmitter and receiver, the CSI
phase initially contains many errors [11], and these
phase errors are difficult to eliminate. Therefore, it
is challenging to extract the CCI robustness and only
motion-related signal component from varying CSIs.

• Universal equipment vs. Complex function: The spe-
cialized radio frequency equipment can select a unique
channel to avoid CCI, and the impact of CCI can
also be degraded by increasing the sending power.
However, these methods are expensive to implement in
daily life or have side effects on other wireless signals,
e.g., Bluetooth and Zigbee. Thus, How to realize the
complex function of anti-interference with universal
equipment becomes a question worthy of consideration.

• Fast recognition speed vs. High computational com-
plexity: In order to achieve a fast recognition speed, the
computational complexity needs to reduce. However,
most existing subcarrier fusion algorithms for data
dimension reduction become ineffective since the weak
subcarrier correlation caused by CCI [15]. Thus, how to
select subcarriers in CCI scenarios to balance accuracy
and speed becomes an inevitable problem.

To tackle these challenges, we propose PhaseAnti, an
anti-CCI HAR system based on WiFi CSI. Specifically, by
eliminating irrelevant errors, the phase component NLPEV
is leveraged from the off-the-shelf WiFi device since this
component keeps constant for CCI and contains motion in-
formation. Then, a suitable calibration method is introduced
to make NLPEV data stable and sensitive to motions. Next,
to reduce the data dimension, a novel subcarrier selection
algorithm is used with less information loss. Finally, by
using this calibrated data of the selected subcarrier to per-
form HAR in CCI scenarios, the activity can be recognized
accurately with low recognition time.

In total, we make the following contributions:
• We propose a novel Anti-interference, Non-intrusive

HAR system PhaseAnti leveraging CSI from a single
commodity WiFi device.

• As far as we know, this work is the first to present a
CCI-independence component of CSI and the first to
use the CSI phase component to perform HAR in CCI
scenarios. We carefully verify the invariance of the pro-
posed component NLPEV to various CCI scenarios and
the difference of this component to distinct activities.

• Instead of fusing subcarrier simply, we design an effec-

tive algorithm to choose subcarriers according to the
sensitivity of the subcarrier to movements. We show
that this algorithm can select subcarriers with more
motion information while reducing the data dimension.

• Extensive experiments with different motions have been
performed in various CCI scenarios. The results show
that PhaseAnti improves up to 16% recognition accu-
racy rate on average in the presence of complex CCI,
reaching 95%, and the recognition speed is 9× faster
than the pioneer anti-CCI HAR solution [15].

The rest of the paper is organized as follows. We first
present the preliminaries of CSI and the analysis of NLPEV
data in Section II. We then describe the PhaseAnti design in
Section III. Implementation and evaluation are presented in
Section IV. Section V discusses the related works. Finally,
we conclude our work in Section VI.

II. PRELIMINARIES AND NLPEV ANALYSIS

A. Channel State Information Preliminaries

Network Interface Cards (NICs) continuously capture
variations in the wireless channel using CSI, which is fine-
grained physical layer information and characterizes the
channel frequency response (CFR) of the wireless channel
[12]. CSI reveals the channel characteristics experienced
by the received signals, such as the effect of scattering,
multipath effect, and power decay [16]. Since WiFi systems
commonly use Orthogonal Frequency Division Multiplexing
(OFDM) technology, the channel between each transmitter-
receiver (Tx-Rx) antenna pair consists of multiple subcar-
riers [8]. Let Xi and Yi be the frequency domain repre-
sentations of the transmitted and the received signals of ith

transmitter-receiver pair, respectively. Thus, the two signals
can be related by the expression:

Yi =HiXi +Ni (1)

where Hi is the complex-valued CFR of ith Tx-Rx pair
which can be estimated by transmitting a known preamble
of OFDM symbols between the transmitter and the receiver
[8], and Ni is the additive white Gaussian noise [9]. CSI
measurements contain these CFR values, and the CFR of
kth subcarrier in ith Tx-Rx pair can be expressed as:

Hi
(k) =

∣∣∣hi
(k)
∣∣∣ · e−j·∠hi

(k)

= Ii
(k) + jQi

(k) k ∈K (2)

where
∣∣∣hi

(k)
∣∣∣ and ∠hi

(k) denote the amplitude and the phase
of kth subcarrier in ith Tx-Rx pair. Besides, the raw CFR
estimated in NICs can also be recorded as the I/Q signal.
I and Q are the in-phase component and the quadrature
component, respectively. K contains the subcarrier indexes.
Although the WiFi system has 56 subcarriers over a 20 MHz
channel, the Intel 5300 NIC we use can only report CSI
for 30 of the 56 subcarriers [17]. Specifically, for the Intel
5300 NIC, K = [−28,−26, · · · ,−2,−1, 1, 3, · · · , 27, 28].
The phase ∠hi

(k) can be calculated from the I/Q component:

φ = arctan(
Q

I
) (3)
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(a) CSI amplitude changes with various CCI sce-
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Fig. 2 Observation of the properties of different CSI signal components. Each CCI scenario contains 500 consecutive
CSI frames, and the sampling rate is 100 Hz. All these CCI scenarios do not include human movements.

B. NLPEV
Due to the variant signal transmission environment and

the imperfect hardware design, the measured phases at the
receiver are different from the phases at the transmitter.
Generally, the phase difference between transmitter and
receiver can be grouped into two categories, i.e., linear
phase errors (LPE) and nonlinear phase errors (NLPE) [18].
Especially, LPE and NLPE mean that the phase errors vary
linearly or nonlinearly with subcarrier indexes, respectively.

According to [11], [19], [20], for a particular pair of
transmitter and receiver, the phases of subcarriers measured
at the receiver φ can be expressed as:

φ = ϕI + ω + θ + σ + γ + χ (4)

where ϕI represents the real phases at the transmitter. ω, θ,
σ, and γ denote the phase offsets due to packet boundary
detection (PBD), sampling frequency offset (SFO), carrier
frequency offset (CFO), and time of flight (ToF) respectively,
and these phases are LPEs [20]. According to [18], imperfect
hardware design causes an NLPE. Besides, by affecting
multipath, the motion also causes an NLPE [21]. Thus, the
last element χ can be written as:

χ = ψ + η (5)

where ψ and η are the NLPEs caused by imperfect hardware
design and human motion, respectively. Since ψ is proved to
be a constant for each specific network card [18], the change
of χ equals to the variation of η caused by human move-
ment. Therefore, by comparing the χm in the movement
with the χwm in an empty room without human motion, the
NLPE η caused by human movement can be estimated as:

χm − χwm = ψ + η − (ψ + ηem)

η = χm − χwm

(6)

where ηem is the variation of NLPE without human move-
ment and equals to 0 [18]. Thus, η can be estimated by
nonlinear phase error variation (NLPEV) when NICs do no
change. Section III-A shows the derivation process of η.

C. Preliminary Tests and Observations
We perform preliminary experiments to evaluate the sta-

bility of NLPEV for various CCI scenarios, and the differ-
ence of NLPEV for distinct activities. The specific settings
of these CCI scenarios are shown in Tab. I.

TABLE I Setting for CCI scenarios. IAP: Interference AP.
ITR: Interference traffic rate. Channel: IAP channel. The
recognition AP is set to channel 1 in the 2.4 GHz band.

CCI scenarios IAP number ITR for each IAP Channel
S1 0 None None
S2 1 1 MB/s 2
S3 2 1 MB/s 2
S4 3 1 MB/s 2
S5 1 10 MB/s 2
S6 2 10 MB/s 2

As shown in Fig. 2(a), with the increasing of setting ITR,
the amplitude of CSI subcarriers also rises. This is because
the router increases its own power in more severe CCI to
better compete for the channel. Thus, it is difficult to obtain a
CCI-independence component from CSI amplitude. Fig. 2(b)
depicts the impact of various CCI scenarios on different CSI
phase components. Since many phase errors are included, the
original phases are unstable and randomly change from −π
to π even when the CCI does not change. Besides, since the
more general 2.4 GHz band exists much CCI, the stability
of the phase difference data [9] generated by the subtraction
of two receiver antenna phases and proved to be stable and
effective in 5 GHz band, is affected. However, since all the
phase errors are removed, and only the motion-related com-
ponent is retained, the proposed phase component NLPEV
keeps stable in various CCI scenarios and stays around
0 (ηem) since there is no motion. Fig. 2(c) depicts that
different activities contribute differently to the output of total
NLPEV time curves. Notably, the total NLPEV represents
the sum of absolute values of 30 subcarrier NLPEVs. As
shown in Fig. 2(c), the intense-motion, e.g., walking and
running, make large NLPEV vibrations. However, the slow-
motion, e.g., sitting, makes a small NLPEV fluctuation.
Moreover, the total NLPEV keeps constant and approxi-
mately equals 0 when there is no motion.

These observations conclude that the amplitude-based
methods are hardly able to realize anti-interference due to
the unstable subcarrier amplitudes caused by varying CCI,
which can seriously degrade the classification performance.
Besides, other phase components like the original phase
and the phase difference do not contain enough motion
information due to lots of phase errors and CCI, respectively.
However, the proposed CSI phase component NLPEV re-
mains invariant across various CCI and time. Moreover, the
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NLPEVs caused by different human motions are distinct.
Therefore, by extracting NLPEV data from the CSI phase
to perform HAR, the system can achieve anti-interference.

III. PHASEANTI SYSTEM DESIGN

To achieve HAR in CCI scenarios, we design PhaseAnti,
and its framework is shown in Fig. 3. The proposed system
has two most crucial components, i.e., phase data processing
unit, and amplitude data processing unit. Firstly, phase error
elimination and NLPEV extraction are performed during
the phase data processing. The crucial distinction of this
component is that it is invariant across various CCI scenarios
and time but different for distinct motions. Then, an ampli-
tude data processing method is introduced to perform data
segmentation of CSI amplitudes and use the segmentation
information to realize the adaptive NLPEV data filtering
and segmentation. Next, a subcarrier selection algorithm is
proposed to reduce the data dimension. Finally, the features
are extracted, and the activities are classified.

A. Phase and Amplitude Data Processing

Phase Extraction and Unwrapping: As introduced in
Section II, the raw phases at the receiver can be measured
according to Eq. (3). However, as shown in Fig. 4, the raw
phases distribute between −π and π due to the periodicity
of the tangent function, which results in the ambiguity of
the subcarrier relationship. Thus, to recover the real phases
of all subcarriers, the raw phases are unwrapped by tracking
the corresponding periodic integers of subcarriers [18]. With
such unwrapping, the unwrapped phases of each subcarrier
become an approximately linear curve.

Gradient Estimate and Phase Compensation: Due to
the low RSSI of received signals and the unstable CSITOOL
[17], not all of the subcarrier phases are measured accurately
and unwrapped successfully [18], [20]. Moreover, these in-
correctly measured phases are harmful to HAR due to phase
aliasing. Thus, it is necessary to eliminate and then smooth
the incorrectly measured phases of the sampled CSI frames.
Fig. 5(a) depicts that some incorrectly unwrapped phases
(marked with black triangles) change from one subcarrier
to another subcarrier randomly with different gradients. As
shown in Fig. 5(b), we observe that the gradients of regularly
changing phases are more concentrated than the gradients
of randomly changing phases (marked with red circles).
Moreover, the gradient variances of randomly changing

algorithm 1 Phase filter based on gradient variances

Input: subcarrier phases of frames U = {φ1,φ2, ...}.
Output: randomly changing phase frame indexes Index.

1: for i := 1; i <= length(U); i++ do
2: Gi := gradient(φi). //Gradient of phases.
3: Ri := gradient(Gi).
4: var := 0. //Variation of gradient.
5: for k := 1; k <= 30; k ++ do
6: var := var + abs(Ri

k).
7: end for
8: if var/(30× (max(Ri)−min(Ri))) > νmax then
9: Index.add(i).

10: end if
11: end for
12: return Index.

phases are steep and prominent in all frames (marked
with black rectangles). To find the frames with incorrectly
measured phases, inspired by the above observation, we
design an algorithm based on the gradient variance threshold
to seek out the frames with larger phase gradient variance.
Algorithm 1 describes the searching process.

From the cumulative distribution of the normalized gra-
dient variances shown in Fig. 5(c), we can observe that the
frames with randomly changing phases (larger variance) are
few in all frames. Furthermore, Fig. 5(b) shows that these
frames appear discontinuously. Thus, the frames with ran-
domly changing phases can be smoothed and compensated
to capture motions continuously. Specifically, the moving
average filtering [22] with time weight is used to smooth
the randomly changing phase frames. The smoothed phases
of the frames in the Index can be expressed:

φ′ =
1

Wnor

∑
i∈Nor

φi Nor ⊆W (7)

W = S · tact (8)

where φ′ is the smoothed phase, and W is the window
size of the moving average filter, which is determined by
the sampling rate S and the motion-related time factor tact.
To minimize the deviation caused by smoothing, based on
empirical knowledge, tact is set to 0.3s. Nor is the set of
correctly unwrapped frames in W , and Wnor is the number
of the correctly unwrapped frames in W .

Elimination of environmental impacts: As introduced in
Section II, the subcarrier phases φ measured at the receiver
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Fig. 5 Unwrapped phase observation and filtering.

can be expressed as:

φ = ϕI + ω + θ + σ + γ + χ (9)

Specifically, the phase errors of PBD (ω) and SFO (θ)
in the same frame are related to subcarrier index K, which
can be represented as:

ω = 2πα ·K (10)

θ = 2πβ ·K (11)

where α and β are constant depending on PBD and SFO.
The offset of ToF γ is also related to subcarrier frequency:

γ = 2πtfF (12)

where tf is ToF and affected by location. F is the set of
subcarrier frequencies represented by the center frequency
fc, identity matrix ~q, the frequency difference between two
adjacent subcarriers fb (equals to 312.5 kHz [12]), and
subcarrier index K, i.e., F = fc · ~q+ fbK. Thus, the phase
error caused by ToF γ can be rewritten as:

γ = 2πtfF

= 2πtf (fc · ~q + fbK)

= 2πtffc · ~q + 2πtffbK

= Z + 2πtffbK

(13)

where 2πtffc · ~q is independent of K. In one frame, tf
is a constant value, so we use Z to replace the first part.
In this respect, the phase measured at the receiver can be
reformulated as:
φ = ϕI + ω + θ + σ + γ + χ

= ϕI + 2πα ·K + 2πβ ·K + σ +Z + 2πtffb ·K + χ

= ϕI + 2π(α+ β + tffb)K + σ +Z + χ

= ϕI + 2πλ ·K + σ +Z + χ
(14)

For a specific frame, λ is a constant value and represents
the sum of α, β, and tffb. Besides, σ is also a constant for
each subcarrier in the same frame and can be estimated by
φ [11]. Thus, we use C to replace the sum of σ and Z.
Then the received signal can be rewritten as:

φ = ϕI + 2πλ ·K +C + χ

= 2πλ ·K + (ϕI +C) + χ

= 2πλ ·K +C∗ + χ

(15)

where C∗ contains the real phase ϕI and the constant C.
According to [11], C∗ can be estimated by the phases of a
pair of mirror subcarriers measured at the receiver. Specif-
ically, we sum the phases (φ−1 and φ1) measured at the
receiver of a pair of mirror subcarriers -1 and 1 (subcarriers
15 and 16 in CSITOOL) as the following equation:

φ−1 + φ1 = 2πλ · (−1 + 1) + 2 ·C∗ + χ−1 + χ1

= 2 ·C∗ + χ−1 + χ1

(16)

where χ−1 and χ1 are the NLPEs of subcarrier -1 and
subcarrier 1 (subcarriers 15 and 16 in CSITOOL) respec-
tively and χ−1 + χ1 ≈ 0 [18]. Thus, C∗ can be calculated
approximately as:

C∗ ≈ φ−1 + φ1
2

(17)

Here, C∗ is subtracted from the phases of all received
frames for the elimination of environmental impacts. After
the elimination, the normalized phases across subcarriers,
as shown in Fig. 6(a), are evenly distributed on both sides
of the X-axis and approximately centrosymmetry with the
center subcarrier.

Elimination of hardware impacts and Obtain NLPEV:
After eliminating the environmental impacts, the total NLPE
χ caused by imperfect hardware design and human motion
can be expressed as:

χ ≈ φE − 2πλ ·K (18)

where φE denotes the normalized phases after subtracting
C∗. To obtain a relatively steady NLPE χ and to reduce the
impact of location on motion waveforms, similar to [18], we
use the deviation between the normalized phases φE and the
fitted line L to represent the stable NLPE χst. Especially,
the fitted line L is generated by connecting two points, i.e.,
(−28, φE,−28) and (28, φE,28) (corresponding to subcarriers
1 and 30 in CSITOOL), which can be expressed as:

L = slope ·K + bias

=
φE,28 − φE,−28

56
·K +

φE,−28 + φE,28

2

(19)

Thus, the stable NLPE χst can be obtained by:

χst = φE −L (20)

Since the NLPE caused by imperfect hardware design ψ is
a constant for the specific network card [18] and ηem equals
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Fig. 6 Phase and amplitude adaptive processing.
0 when there is no motion in the range, we can calculate
ψem in an empty room without human motion:

ψem + ηem = φE,em −Lem

ψem = φE,em −Lem

(21)

where φE,em and Lem denote the normalized phases and
the fitted line in the empty room, respectively. Then, ψem is
used to represent the NLPE caused by imperfect hardware
design in all frames. Here, we subtract ψem from the stable
NLPE χst of each received frame for the elimination of
hardware impacts. Thus, the NLPEV η caused by human
movement of each frame can be obtained by:

η = χst −ψem

= φE −L−ψem

(22)

Adaptive Segmentation and Filtering: To reduce
the impact of background environment and obtain high
energy-efficiency, the dynamic segmentation is employed in
PhaseAnti. Since amplitude information has better continuity
[21] and amplitude and phase are synchronized for the same
frame, NLPEV is segmented according to the results of
amplitude segmentation. To obtain stable CSI amplitudes
and make them amenable for data segmentation, the high-
frequency glitches need to be eliminated. Specifically, we
leverage Hampel Filter [23], which is proved to be useful
for wireless signals [9] to reduce high-frequency amplitude
glitches using a sliding window of 500 frames and the
threshold of 0.01. Fig. 6(b) depicts the amplitudes after
filtering. The smoothed amplitude is a straight line with
small fluctuations when there is no one in the range, and the
variation becomes significant when the person is moving.
Thus, an effective algorithm [24] based on the amplitude
gradient threshold is used for motion sample segmentation.

Then, the adaptive Hampel Filter is used for NLPEV
glitch elimination with the same sliding window size as the
amplitude segmentation and the threshold of 0.01. Fig. 6(c)
presents the NLPEV calibration results. The original NLPEV
of all subcarriers has high-frequency noises. However, after
implementing the proposed adaptive smoothing scheme, the
high-frequency noises are removed. Moreover, the sum of
the absolute values of each subcarrier NLPEV clearly shows
that the same motion has similar NLPEV waveforms.

Subcarrier Selection: To further boost the reliability
of NLPEV data and to reduce computation complexity, a
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Fig. 7 Subcarrier selection.
subcarrier selection algorithm is employed in PhaseAnti.
Since different subcarriers have distinct wavelengths, the
sensitivity of subcarriers for motions is also different. Gen-
erally, the larger mean absolute deviation (MAD) caused by
movement represents the higher sensitivity of the subcarrier.
Thus, the MAD of NLPEV data for all subcarriers is used
to measure its sensitivity. Specifically, for the given training
and testing sets, we first choose u maximum MADs of
NLPEV data from all motion frames. Then, to better satisfy
all subcarrier spatial characteristics and enhance the data
stability, the median of u MADs of NLPEV data is used
as the final selection. Fig. 7(a) shows the NLPEV series
patterns for the running frames, and we can observe that
the neighboring subcarriers of subcarrier 20 have a higher
sensitivity to the running frames. Besides, Fig. 7(b) depicts
the MAD of each subcarrier for all motion frames, and the
NLPEV MAD of the 19th subcarrier is the maximum. In
PhaseAnti, we set the u = 3 as the default value, and
subcarriers 19,18 and 17 are thus selected. With the above
approach, subcarrier 18 is finally chosen.

B. Feature Extraction and Classification
To perform a fair comparison, for both amplitude and

NLPEV data, we extract the same 10 statistic features from
both time and frequency domains, which are widely used
in the WiFi-based HAR systems [6]–[8], [10]. Specifically,
the time-domain features are mean, variance, maximum,
minimum, median, first quartile, and third quartile. The
frequency-domain features are information entropy, spec-
trum energy, and maximum frequency domain. To evaluate
the performance under different classifiers, five classical
classification approaches are used to recognize activities,
which are the Random Forest (RF), the Decision Tree (DT),
the k-NearestNeighbor (kNN), the Logistic Regression (LR)
and the Support Vector Machine (SVM).
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Fig. 8 Observation of invariance of amplitude, phase, and NLPEV with respect to time, sending power, and CCI intensity.
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Fig. 9 Evaluation scenario in a conference room.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

In the experiments, we use two Lenovo laptops as a
recognition access point (RAP) and a recognition receiver
(RR), respectively, both equipped with the Intel 5300 NIC
with three antennas. Besides, we use three TP-link WiFi
routers as interference APs (IAPs) and three other devices
(mobile phone or laptops) as interference receiver (IR).
PhaseAnti is implemented on the Ubuntu desktop 14.04 LTS
OS for both RAP and RR. PhaseAnti uses the laptop RR to
collect per frame CSI at a rate of 100 frames per second
using CSITOOL [17].

Deployment: We conducted extensive experiments with 8
persons over one month. As shown in Fig. 9, the 6.1× 4m2

test scenarios include a computer table and several chairs.
The distance between point 1 and point 2 is 3m. Besides,
four different actions, i.e., standing at point 1, walking
between point 1 and point 2, running between point 1 and
point 2 and sitting at point 1, and a reference state, i.e., the
empty room, are design to observe the impact of CCI on
CSI signals with or without human movement.

A comparison experiment is given to measure the impact
of various CCI on CSI, including the following scenarios:
• Non-interfering scenario: RAP A is set to channel 1

and forms a wireless link with RR C. AP B, laptop D,
and other devices are powered off.

• Simple and constant CCI scenario: Based on the
above setting, AP B is powered on and set to channel
3 since half of channel 3 subcarriers are overlapped
with the subcarriers of channel 1. Then, Laptop D is
powered on and connected to AP B with 2.5 MB/s ITR
(100 frames/s with 25000 bytes packet length).

• Complex and varying CCI scenario: In addition to

the above settings, mobile phone G and laptop H are
powered on and connected to APs E and F, respectively.
The ITR of mobile phone G and laptop H are 1 MB/s
and 5 MB/s, respectively. Moreover, APs B, E, and F
are adjusted from channel 1 to channel 5 to produce a
varying CCI since only channel 1 to 5 overlap with the
RAP A channel.

We examine the performance of single-user motion recog-
nition in three given scenarios. For every participant of 8
people in each CCI scenario, we collect 54 samples of each
motion or state. Thus, a total of 3×8×5×54 (6480) activity
samples are collected for training and testing.

B. CCI Robustness Assessment of NLPEV
Invariant to CCI and stable across time are essential

attributes for a CCI robustness signal component. However,
under different CCI scenarios, APs change the sending
power to better compete for the channel [12]. Besides, the
sampling rate also decreases as the increase of CCI ITR [25].
Thus, we demonstrate the invariance of NLPEV to time,
sending power, and CCI ITR by experiments.

Time Invariance: For HAR systems, the signal compo-
nent used for recognition should be invariant at different
sampling time. However, it is non-negligible that CSIs
may change due to different temperatures and humidity of
different days [18]. Since NLPEV is also a phase component
extracted from CSI, it is vital to ensure the stability of
NLPEV across time. Fig. 8(a) shows amplitude, phase,
and NLPEV at different time without human motion. We
measure the CSI in the conference room, as shown in Fig. 9,
and extracted NLPEVs, day and night for a month. We
can see that amplitude change with different sampling days
and phase change randomly due to phase errors. However,
NLPEVs are relative stability and invariant across time.

Sending Power Invariance: In order to examine the
invariance of NLPEV to the change of sending power caused
by AP competing for the channel, as shown in Fig. 9(a), we
change the NIC power of RR C from 10 dBm to 15 dBm
(maximum power of 5300 NIC) and fix the power of RAP
A. Then, the sampled CSIs and the extracted NLPEVs in
different sending power are shown in Fig. 8(b). It is evident
that amplitude increases with the rising sending power.
However, NLPEV changes negligibly with the increasing
sending power, which clearly demonstrates that NLPEV is
more stable and independent of the varying signal strength.
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CCI Intensity Invariance: The increase of CCI intensity
causes a decrease in the sampling rate and the confusion
of the receiving packet order [15]. Thus, the stability of
CSI is affected. To evaluate the impact of this factor on
NLPEV, we keep one IAP (router B in Fig. 9(a)) and adjust
ping rates and packet lengths of the interferer, as shown in
Fig. 8(c), to set different ITRs. Fig. 8 depicts that amplitude
increases significantly due to the increasing of sending power
caused by AP competing for the channel in more severe
CCI scenarios. However, NLPEV stays almost constant even
if the CCI ITR is changing. This experiment confirms that
NLPEV is invariant to various CCI intensities.

C. Performance of Activity Recognition

Accuracy: The recognition accuracy rate (RAR) used in
this paper is defined as the ratio of the number of correctly
classified activities to the number of the whole testing activi-
ties. 10-fold cross-validation [26] is used to avoid overfitting.
Besides, we compare the proposed method using a single
subcarrier (P-PhaseAnti-1) with the pioneer amplitude-based
method [7] using 30 subcarriers (A-WiFall-30), the state-
of-the-art anti-CCI algorithm [15] using 5 subcarriers (A-
WiAnti-5), and the pioneer phase-based method [9] using a
single subcarrier (P-PhaseBeat-1).

Fig. 10(a) shows the RARs of different algorithms in the
simple CCI scenario, as introduced in Section IV-A. As a
reference state in the non-interfering environment, A-WiFall-
30-W/O-I denotes the RAR of WiFall using 30 subcarriers
in the scenario without CCI. The rest of the experimental
results of Fig. 10(a) are obtained in the simple CCI scenario.
As shown in Fig. 10(a), although only one subcarrier is used,
P-PhaseAnti-1 can still achieve better performance compared
with the baselines in all cases. Since all subcarriers are
used in A-WiFall-30, the RAR of this method represents
the upper limit of the amplitude method. However, the
computational complexity of A-WiFll-30 is too big for
real-time HAR. Compared with WiFall, the pioneer anti-
CCI algorithm WiAnti only uses 5 subcarriers and obtains
similar RARs close to A-WiFall-30 due to the consider-
ation of subcarrier correlation. However, since amplitude
inevitably changes with varying CCI, the performance of A-
WiAnti-5 is limited. Compared with WiAnti, P-PhaseAnti-1
can achieve better performance since the phase component

NLPEV used for recognition is independent of CCI. Specif-
ically, among five different classifiers testing, P-PhaseAnti-1
achieves 93.98% RAR on average, which is 14.53% higher
than the pioneer anti-CCI method A-WiAnti-5. Besides,
for the non-interfering environment, the performance of A-
WiFall-30-W/O-I has a significant improvement compared
with the same method in CCI scenarios. This means that
the state-of-the-art methods are indeed affected by CCI.
However, P-PhaseBeat-1 gets 6.97% higher RAR than A-
WiFall-30-W/O-I on average. This means that the NLPEV
used by PhaseAnti contains more motion information than
the amplitude, even without the effects of CCI.

Fig. 10(b) shows the experimental results in the complex
CCI scenario. Compared with the simple CCI scenario, the
RARs of all baseline methods decrease due to the more
severe CCI. Nevertheless, P-PhaseAnti-1 keeps almost the
same and consistently outperform A-WiFall-30, A-WiAnti-
5, and P-PhaseBeat-1 in terms of RAR. Since the complex
CCI environment for each algorithm is consistent, higher
RAR means less impact of CCI to the signal component
and better ability to maintain motion information.

We further test the performance of various data dimension
reduction algorithms under the complex CCI, and the results
are shown in Fig. 10(c). Especially, the average RAR rep-
resents the average performance of five different classifiers.
A-WiFall-6 denotes the useful subcarrier fusion algorithm, as
introduced in [7]. P-MAX-1 means selecting the subcarrier
with the maximum NLPEV MAD for all motion frames
(e.g., subcarrier 19 in Fig. 7(b)), and P-Random-1 denotes
randomly selecting one subcarrier NLPEV data. Besides, P-
PhaseAnti-28 represents using all subcarrier NLPEV data to
perform HAR (except subcarriers 1 and 30 in CSITOOL).
Due to the consideration of subcarrier spatial characteristics
and the stability of data, P-PhaseAnti-1 outperforms P-
MAX-1 and P-Random-1 in terms of average RAR. This
means the choice of median makes the data more robust.
Moreover, the RAR of P-PhaseAnti-1 is close to the RAR
of P-PhaseAnti-28. This means that although only one sub-
carrier is used, most motion information can be maintained
by our valid subcarrier selection algorithm.

Classification: Two confusion matrices that using RF as
a classifier are illustrated to demonstrate the robustness of
algorithms to similar motions (running and walking) in the
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(a) P-PhaseAnti-1 uses RF in the com-
plex CCI scenario.

(b) A-WiFall-30 uses RF in the com-
plex CCI scenario.

Fig. 11 Confusion matrices for different systems.

complex CCI scenario. From Fig. 11(a), we can observe
that P-PhaseAnti-1 can not only classify normal actions, i.e.,
empty room, sitting, and standing, with high RARs close to
100% but also achieves 93% RAR of the similar activities,
i.e., walking and running in the complex CCI scenario. In
contrast, Fig. 11(b) depicts that the amplitude-based method
A-WiFall-30 achieves high RARs on normal motions. How-
ever, complex CCI has considerable side effects on similar
activity RARs. Thus, PhaseAnti is more robust for similar
motion classification in the complex CCI scenario.

Speed: Fig. 12 shows the recognition time of a sin-
gle motion sample for different algorithms, including the
time of signal processing and the time of classification.
Compared with the method using all subcarriers (A-WiFall-
30), the pioneer anti-CCI method WiAnti can realize 3×
faster recognition speed due to the valid subcarrier selection.
However, since only one subcarrier is used, P-PhaseAnti-1
can recognize the activity with minimal time (0.057s) and
nearly 9× faster than the pioneer anti-CCI solution WiAnti.

V. RELATED WORK

Wireless sensing HAR systems can be broadly classified
into three categories:

Specialized hardware-based: Fine-grained radio fre-
quency signals can be collected by the specially designed
hardware [24], [27], [28]. WiSee [27] used USRP to capture
the Doppler shift in body reflected signals to recognize
a set of nine gestures with high accuracy. TagFree [28]
used the Thingmagic reader to collect the multipath signals
from different RFID tags to classify the working motions.
However, the specialized equipment used by these methods
is irreplaceable but expensive.

RSSI-based: RSSI is an indication to measure the power
of the received radio signals. Since different activities cause
distinct RSSI fluctuations, activities can be recognized ac-
cordingly by signal processing. PAWS [29] explored WiFi
ambient signals for establishing RSSI fingerprint of different
activities. Wigest [30] leveraged changes in WiFi RSSI
to sense in-air hand gestures around the mobile device.
However, these methods can only do coarse-grained HAR
since RSSI falls entirely in the time domain, while the
frequency domain is totally neglected. Besides, suffering
from performance degradation due to the multipath effect
is also a problem for RSSI-based systems [31].
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Fig. 12 Comparison of various algorithm recognition time.

CSI-based: In contrast, CSI is a fine-grained value de-
rived from the physical layer of the off-the-shelf WiFi
device. Features are descriptions of motion from different
perspectives, i.e., time domain and frequency domain. Thus,
compared with RSSI, more information can be obtained
from CSIs. Many excellent solutions have been proposed.
PhaseBeat [9] exploited CSI phase difference data to monitor
breathing and heartbeats. WiKey [8] recognized the typed
keys based on CSI values to collect password information.
PERFIC [14] amended the abnormal WiFi subcarriers to
recognize motions in cross-technology interference (caused
by Bluetooth or Zigbee) scenarios. However, most existing
works based on WiFi do not consider the impact of CCI
caused by other WiFi devices, and their experimental results
are based on a non-CCI environment. Furthermore, the
performance of these systems degrades due to CCI. Although
WiAnti [15] proposed a subcarrier selection algorithm to se-
lect most information subcarriers to realize anti-interference,
this algorithm still stays at the signal processing level and
does not propose the CCI-independent CSI component.
Moreover, the varying CSI amplitude limits its performance.

In summary, inspired by the prior works, the contributions
of our work lie in obtaining CCI-independence CSI phase
component NLPEV, which is different for distinct activities
and using this component to perform HAR with high RAR
and low recognition time in CCI scenarios. To the best of
our knowledge, it is the first to leverage the interference-
independence CSI component from a commodity WiFi de-
vice to recognize activities accurately in CCI scenarios.

VI. CONCLUSION

In this paper, we propose PhaseAnti, an anti-CCI HAR
system based on WiFi CSI. Specifically, by eliminating irrel-
evant errors, the interference-independent phase component
NLPEV is leveraged from the off-the-shelf WiFi device
since this component keeps invariant for CCI and contains
motion information. Then, a suitable calibration method
is introduced to make NLPEV data stable and sensitive
to motions. Next, to reduce the data dimension, a novel
subcarrier selection algorithm is used with less information
loss. Finally, by using this calibrated NLPEV data of the
selected subcarrier to perform HAR in CCI scenarios, the
activity can be recognized accurately with low recognition
time. Extensive experiments with different motions are im-
plemented in various CCI scenarios, and the results show
that PhaseAnti can achieve superior performance on RAR
and recognition time over existing methods in all cases.
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