
FedCD: A Hybrid Centralized-Decentralized
Architecture for Efficient Federated Learning

Pengcheng Qua, ∗Jianchun Liua, Zhiyuan Wanga, Qianpiao Mab, Jinyang Huangc
aSchool of Computer Science and Technology, University of Science and Technology of China, Hefei, China

bPurple Mountain Laboratories, Nanjing, China
cSchool of Computer and Information, Hefei University of Technology, Hefei, China

Email: {qupengcheng, cswangzy}@mail.ustc.edu.cn, jcliu17@ustc.edu.cn, maqianpiao@pmlabs.com.cn, hjy@hfut.edu.cn

Abstract—With billions of IoT devices producing vast data
globally, privacy and efficiency challenges arise in AI applica-
tions. Federated learning (FL) has been widely adopted to train
deep neural networks (DNNs) without privacy leakage. Existing
centralized and decentralized FL architectures have limitations,
including memory burden, huge bandwidth pressure and non-
IID data issues. This paper introduces a novel framework, named
FedCD, merging the benefits of both centralized and decen-
tralized FL architectures. FedCD strategically distributes the
model based on layer sizes and consensus distances (measuring
the deviation between the local models and the global average
models), effectively relieving network bandwidth pressures and
accelerating training speed even under the non-IID setting. This
method significantly mitigates resource constraints and improves
model accuracy, offering a promising solution to the challenges
in distributed machine learning. Extensive experiment results
show the high effectiveness of FedCD. The total completion time
of FedCD is reduced by 16.3%-53% and the average accuracy
improvement is 1.85% compared to the existing FL systems.

Index Terms—federated learning, edge computing, layer dis-
tribution

I. INTRODUCTION

Billions of Internet of Things (IoT) devices globally gen-
erate substantial data, including photos and voice samples,
propelling the advancement of artificial intelligence (AI) [1].
Nonetheless, the process of cloud computing carries the
inherent risk of privacy breaches since the data gathered by the
cloud may contain sensitive and confidential user information.
Also, transferring all data to a remote cloud server can
increase latency and degrade user experience [2]. Therefore,
edge computing (EC) [3], [4] has emerged as a solution to
locally store data and shift high computing power applications
from cloud servers to network edges [5]. Furthermore, to
alleviate data privacy leakage concerns, federated learning
(FL) [6] is employed for distributed machine learning at the
network edge across distributed datasets.

The most prevalent and widely used architecture in the
existing FL mechanisms is the centralized FL architecture
[6], [7], which involves local training at the network edge
and model aggregation at the parameter server (PS). Initially,
each worker executes stochastic gradient descent (SGD) [6]
on its local dataset to minimize the loss function and then
dispatches the updated model to the PS for global aggregation.
Subsequently, the PS circulates the averaged model back

to the workers for the following round of local training.
However, the PS can become a bottleneck due to potential
traffic congestion caused by numerous workers simultane-
ously communicating, leading to system breakdown if the PS
is compromised.

Decentralized federated learning (DFL) [8], [9] serves as
an alternative FL architecture. Here, each worker exchanges
models with its neighbors and aggregates them for the subse-
quent local training. As there is no central PS, DFL eliminates
the likelihood of traffic congestion at the PS and the PS
failure risks. Furthermore, communication between workers
is faster than between workers and the PS, significantly
reducing communication time. Despite these advantages, two
challenges exist in DFL: 1) Limited Memory Size. Workers
must receive and store neighbor models, which may strain
memory resources because the memory size of a worker is
always limited. 2) Non-IID Local Data. The training data
of a client is always determined by the environment and
users’ preferences. The data in each worker is not independent
and identically distributed (non-IID) in practice and cannot
represent the overall data distribution. For example, in the
garage, some cameras take more pictures of people, and some
take more pictures of vehicles. This challenge also exists in
centralized FL. But in DFL, each worker only exchanges
models with a limited number of neighbors, and the training
speed and the test accuracy are affected more by non-IID local
data [10], [11].

To address the memory strain challenge due to large model
sizes, model parallelism [12]- [13] is suggested. This approach
divides the model into sub-models and distributes them across
various devices, alleviating device resource consumption. For
instance, RePurpose [12] adjusts neuron positions to decrease
intermediate data transmission between workers. However,
it still increases network bandwidth strain due to frequent
data transmission. The pdADMM [13] divides the model by
layers, allowing each layer to update the model indepen-
dently without communicating with other layers. However,
this method is only suitable for relatively small models.
Current deep neural networks (DNNs) have large parameter
sizes that continue to grow. Transmitting these large models
to the PS or neighbors will inevitably consume substantial
bandwidth resources, presenting a significant challenge for

both centralized and decentralized architectures.
In this paper, we propose a novel FL framework, named

FedCD, combining features of both centralized and decen-
tralized architectures. FedCD is a framework that belongs to
model parallelism. In FedCD, some layers adopt centralized
architecture and some layers adopt decentralized architecture.
We design a score for each layer according to the layer’s
location and size, and we distribute the layers to the PS
and the neighbors according to the scores at the beginning
stage. Then we use the intermediate data such as consensus
distances [14] to form a new layer distribution method at the
following stage. FedCD relieves network bandwidth pressure
by transmitting sub-models in both centralized and decentral-
ized architectures. However, under the decentralized setup,
each worker exchanges models with only a limited number
of other workers, reducing model performance when local
data is non-IID [11]. To address this, FedCD incorporates a
centralized architecture to aggregate sub-models into a global
model at the PS, yielding good performance even with non-
IID local data. Furthermore, only sub-models are stored in
the workers’ memories which can relieve the burden of the
memories. Consequently, our proposed FedCD can enhance
model training even under non-IID settings and alleviate
resource constraint pressures. The main contributions of our
work can be summarized as follows:

• We propose a novel FL framework, called FedCD, which
facilitates the distribution of sub-models to the PS and
the workers’ neighbors for efficient aggregation. We
provide theoretical evidence affirming the convergence
guarantee of model training with this framework.

• We design a novel algorithm that strategically determines
the distribution of layers to the PS and the neighbors.
This decision is initially based on the sizes and positions
of the layers, and it is subsequently adjusted according
to consensus distances, enabling accelerated convergence
speed.

• Experiment results on classical models and real-world
datasets show the effectiveness of the proposed method.
FedCD can accelerate the training speed by 16.3% -
53% and reduce communication traffic compared to the
existing FL systems.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Federated Learning

Traditional centralized FL consists of N workers and a
parameter server (PS). Each worker i has a loss function based
on the local dataset Di and the size of the dataset is |Di|. The
loss function can be defined as:

Fi(w
t
i) =

1

|Di|
∑
ξ∈Di

fi(w
t
i , ξ) (1)

where wt
i is the model parameter of worker i at round t and

ξ is a batch of the local dataset Di. fi(w
t
i , ξ) is the local

loss function over ξ. To minimize the loss function Fi(w
t
i),

worker i uses stochastic gradient descent (SGD) [6] to update
the local model, which can be formulated as:

w
t+ 1

2
i = wt

i − η∇Fi(w
t
i) (2)

where η is the learning rate, wt+ 1
2

i is the local model of worker
i which finishes the local training after round t, and ∇Fi(w

t
i)

is the gradient of the loss function.
After local training, each worker pushes the local model to

the PS for global aggregation. This process can be formulated
as:

F (wt) =
1

N

N∑
i=1

Fi(w
t) (3)

where wt = 1
N

∑N
i=1 w

t
i and F (wt) is the global loss

function. Then the PS sends the updated global model to the
workers for the next training.

In decentralized FL, the workers are connected in a network
topology. This topology can be modeled as an undirected
graph G = (V,E), where V = {1, 2, ..., N} and E ∈ V ×V .
We use a matrix A = {Ai,j ∈ {0, 1} , 1 < i, j < N} to
represent the graph, where Ai,j = 1 represents there is a link
between worker i and worker j. Otherwise, Ai,j = 0. Worker
i first updates the local model using SGD, and then sends the
local model to neighbors. Worker i receives the models from
their neighbors and aggregates them as:

wt+1
i = wt

i +
∑
j∈Nt

i

ut
i,j(w

t+ 1
2

j − w
t+ 1

2
i) (4)

where N t
i is the neighbor set of worker i at round t. ui,j

is the mixing weight for aggregating the model of worker j.
After aggregating the received models, the worker i adopts
the aggregated model for the next local training.

B. Overview of FedCD

In this section, we will introduce our proposed framework
FedCD, which includes an edge server and some clients. In
FedCD, the PS periodically receives the status information
(e.g., the consensus distance and the accuracy improvement).
After that, the PS generates the layer distribution policy and
sends it to the clients at regular intervals. Once the clients
receive the policy, the clients will send some layers to the
PS and send the rest layers to the neighbors according to
the policy. Then the clients aggregate the received models.
The clients combine the models received from the PS and
the models averaged by themselves. The clients will use
the combined model for the next local training. This entire
process operates for numerous communication rounds until
the model achieves convergence. The process of FedCD is
illustrated in Fig. 1.

C. Convergence Analysis

In this section, we propose the convergence analysis of
FedCD and make four widely used assumptions as follows:

ps

Worker 1

Worker 2

Worker 3Worker 4

Worker 5

Local

training2
P

3
P

4
P

Local

training

Model

Aggregation

Local

training
1

P

1
P

1
P

1
P2

P

2
P

2
P

2
P3

P

3
P

3
P

3
P4

P
4

P

4
P4

P

1
P

1
P

1
P

1
P 1

P

1
P

2
P

2
P

2
P3

P

3
P

3
P

4
P

4
P

4
P

Local

training

Fig. 1: The training process of FedCD (Worker 3 performs
model aggregation).

• Assumption1: Lipschitzian gradient. The loss function
Fi is with L Lipschitzian gradients, i.e.,

||∇Fi(w1)−∇Fi(w2)| |2 ≤ L2 ∥w1 − w2∥2 ,∀w1, w2, i
(5)

• Assumption2: Network connectivity. The network
topology G is a connected topology.

• Assumption3: Bounded gradient variance. The vari-
ance of stochastic gradients is bounded, i.e.,

Eξ∈Di
|| ▽ Fi(w)−▽fi(w; ξ)||2 ≤ σ2,∀i, w (6)

Ei∈V || ▽ Fi(w)−▽F (w)||2 ≤ ς2,∀w (7)

• Assumption4: Bounded model variance. The variance
between the local model and global model is bounded
by ϵ2 , i.e.,

Ei∈V ||wt − wt
i ||2 ≤ ϵ2,∀t, i. (8)

where wt is the average of the combined model of all the
workers, and wt

i is the combined model of worker i.
To express the relationship between the average of the

combined models and the global model when one worker
finishes local training, we adopt an upper bound α2, i.e.,

||wt+1 − wt+ 1
2 ||2 ≤ α2 (9)

where wt+ 1
2 represents the global model when one worker

finishes the local training using SGD after round t, and wt+1

represents the average of the combined models in round t+1.
We conduct an experiment to test the change in the value

of ||wt+1 − wt+ 1
2 || . The results show that ||wt+1 − wt+ 1

2 ||
oscillates around 0.8 in IID settings and around 1 in non-IID
settings with the increase of communication rounds. So we
can use a small bound to limit ||wt+1 − wt+ 1

2 ||2.
We also define the upper bound β2 as:

||∇F (wt+ 1
2)||2 − ||∇F (wt)||2 ≤ β2 (10)

We replace the parameter in [15] (e.g., M̂k by ϵ2). The
detailed proof is as follows: (w0 is the initial model, w∗ is

the optimal model which minimizes F)
E[F (wt+ 1

2)− F (w∗))]

≤ E[F (wt)−F (w∗)]− ηM
2N E||∇F (wt)||2+λ (11)

where λ ≤ ηML2ϵ2

2N + η2L(σ2M+6ς2M2)
2N2 + 6η2L3M2ϵ2

N2 , M is

the size of the data used in each communication round by one
worker. We further have:
E[F (wt+1)− F (wt+ 1

2)]

≤ E < ∇F (wt+ 1
2), wt+1 − wt+ 1

2 > +L
2 ||w

t+1 − wt+ 1
2 ||2

= 1
2 ||∇F (wt+ 1

2) + wt+1 − wt+ 1
2 ||2 − 1

2 ||∇F (wt+ 1
2)||2

− 1
2 ||w

t+1 − wt+ 1
2 ||2 + L

2 ||w
t+1 − wt+ 1

2 ||2

≤ 1
2

{
||∇F (wt+ 1

2)||2 + ||wt+1 − wt+ 1
2 ||2

}
+ L

2 ||w
t+1 − wt+ 1

2 ||2

≤ 1
2E||∇F (wt)||2+ 1

2β
2+ L+1

2 α2 (12)

By adding Eq. (11) and Eq. (12), we obtain the convergence
bound between two consecutive training rounds:
E[F (wt+1)− F (w∗)]

≤ E[F (wt)− F (w∗)]− ηM−N
2N E||∇F (wt)||2

+ λ+ 1
2β

2 + L+1
2 α2

E[F (wt+1)− F (wt)]

≤ −ηM−N
2N E||∇F (wt)||2+λ+ 1

2β
2+ L+1

2 α2 (13)

We sum the results in Eq. (13) from t=0 to t=T-1 and obtain:∑T−1
t=0 E[F (wt+1)− F (wt)] = E[F (wT)− F (w0)]

≤ −ηM−N
2N

∑T−1
t=0 E||∇F (wt)||2 + T (λ+ 1

2β
2 + L+1

2 α2)

1
T

∑T−1
t=0 E||∇F (wt)||2

≤ 2N(F (w0)−F (w∗))
T (ηM−N) + 2N

(ηM−N) (λ+ 1
2β

2 + L+1
2 α2) (14)

D. Problem Formulation

To train models among distributed workers by FL, it
is inevitable to consume resources (e.g., CPU cycles and
network traffic). Formally, we define the computing resource
consumption of worker k in one round as ck. Thus, the
computing resource consumption of T rounds is Tck. We
accumulate N workers’ computing consumption and the total
consumption should not exceed its budget Bc. Each worker’s
transmission workload of centralized architecture is defined
as Wa, where Wa =

∑L
i=1(1− xi)M(i). We define the total

size of the transmitted data of one peer in a decentralized
architecture as Wb, where Wb =

∑L
i=1 2xiM(i). M(i) is

the data volume of the i-th layer model. xi is a binary
variable and it indicates whether layer i adopts centralized
architecture or not (0 for adopting centralized architecture
and 1 for adopting decentralized architecture). We define the
total transmission budget of a round as Bb. Let B1 and B2

represent the inbound bandwidth between workers and the
PS, and the outbound bandwidth between workers and the PS,
respectively. We denote the bandwidth of worker j and worker

m as Bjm. rjm is a binary variable and it indicates whether
there is a link between worker j and worker m. We define the
capacity budget for PS node as Ca and the capacity budget
for worker j as Cj . We formulate the problem as follows:

min λH+(1− λ)f(wt)

s.t.

∑N
k=1 Tck ≤ Bc∑N
k=1 2Wa +

∑N
j=1

∑N
m=1 Wbrjm ≤ Bb

NWa ≤ Ca

Wb

∑N
m=1 rjm ≤ Cj

xi = {0, 1}
rjm = {0, 1}

Let H = max {Wa/B1 +Wa/B2,max {Wb/Bjm}}.

Algorithm 1 LDLS (c1 < c2)

1: Initialize µ1, µ2, L1, L2, sum1 = 0, sum2 = 0 ;
2: Initialize the set of unassigned layers Q1 = {1, 2, ..., L};
3: Sort all layers in non-decreasing order by µ1(l);
4: Select the first element c1;
5: Sort all layers in non-increasing order by µ2(l);
6: Select the first element c2;
7: Q1 ← Q1 − {c1}; Q1 ← Q1 − {c2};
8: L1.insert(c1); L2.insert(c2);
9: sum1+ = µ1(c1); sum2+ = µ2(c2);

10: while Q1 ̸= ϕ do
11: if sum1 < sum2 then
12: search the element l1 with minimum score in Q1;
13: L1.insert(l1);
14: Q1 ← Q1 − {l1};
15: sum1+ = µ1(l1);
16: else
17: search the element l2 with maximum score in Q1;
18: L2.insert(l2);
19: Q1 ← Q1 − {l2};
20: sum2+ = µ2(l2);
21: end if
22: end while

Our objective is to minimize the maximum communication
time and maximize the training speed of FedCD. If λ is set
as a large number, we pursue the minimum communication
time of a round. If λ is set as a small number, we pursue the
quick training speed of a round. The first inequality indicates
that the computing workload of T rounds for N workers is
less than a budget. The second inequality indicates the total
transmission cost per round is less than a budget. The third
inequality indicates the PS node’s capacity is larger than the
total transmission volume between the PS node and workers.
The fourth inequality indicates each worker’s capacity is
larger than the total sizes of the collected models of each
worker.

III. ALGORITHM DESIGN

A. Layer Distribution based on the Layer’s Location and Size

We design two algorithms to decide which layer is sent to
the PS and which layer is sent to the neighbors. Let’s first
introduce the layer distribution method which is based on
the layers’ locations and sizes (LDLS) in FedCD, and it is
described in Algorithm 1. In LDLS, worker i first initializes
two vectors µ1 and µ2, which represent the maximum time
when each layer is sent to the PS and neighbors, respectively.
FedCD uses sum1 and sum2 to express the total time when
the layers are sent to the PS or the neighbors (Line 1). FedCD
also initializes the unassigned layers set Q1 which contains
all the layers (Line 2). Because the bandwidth in the network
fluctuates, the architecture uses the average value to represent
the bandwidth of the network. Let’s assume the inbound band-
width between the workers and the PS is B1, and the outbound
bandwidth between the workers and the PS is B2. Worker i
computes the time when it transmits the layer l’s parameter
from the worker to the PS and downloads it from the PS to the
worker, i.e., µ1(l) = M(l)/B1 +M(l)/B2. M(l) is the size
of layer l. Let’s define the minimum bandwidth in the network
as Bmin, the maximum time when each worker transmits
the layer l’s parameter using the decentralized method is
µ2(l) = M(l)/Bmin. The layers sent to the PS are in the
set L1, and the layers sent to the neighbors are in the set L2.

We choose the layer with the minimum element in µ1 and
the layer is named c1 (Line 4), and choose the layer with
the maximum element in µ2 and the layer is named c2 (Line
6). Then, c1 and c2 are removed from Q1 (line 7). We insert
c1 and c2 to L1 and L2 respectively (Line 8). Then we add
µ1(c1) to sum1 (Line 9) and add µ2(c2) to sum2 (Line 9). d1
is used to express the layer’s distance from c1. If the number
of the layer is lower than c1, d1 will be lower than 0, and if
the number of the layer is higher than c1, d1 will be higher
than 0. d2 is used to express the layer’s distance from c2.
Then we compute the score of each layer: We denote m =
(σ1d1 + σ2d2)M(l):

score(l) = em (15)

Algorithm 1 introduces the LDLS method when c1 < c2. If
c1 < c2, the centralized method will choose the layer with the
minimum score, and the decentralized method will choose the
layer with the maximum score. (That is because the scores
of the layers next to c1 are small and the scores of the layers
next to c2 are very large). If sum1 < sum2, we first choose
the element in Q1 with the minimum score and the layer will
be named l1. Then we move the layer l1 out of Q1 and insert
l1 to L1. And sum1 will be added by µ1(l1) (Line 11-15). If
sum1 > sum2, we will choose the element in Q1 with the
largest score and the layer will be named l2. Then l2 will be
sent to the neighbors for aggregation. We move the layer l2 out
of Q1 and insert l2 to L2 . And sum2 will be added by µ2(l2)
(Line 17-20). If c1 > c2, the centralized method will choose
the layer with the maximum score, and the decentralized

method will choose the layer with the minimum score. The
algorithm will end when all the layers are distributed.

B. Layer Distribution based on Consensus Distance

LDLS method cannot perform well when the number of
workers in the network is large and the number of epochs
in a communication round is small. So the layer distribution
based on consensus distances [14] (LDC) is proposed. The
consensus distance Dt(l) represents the deviation between the
local model and the average global model of layer l. If Dt(l)
is small, it represents that the local model is similar to the
average global model and the workers don’t need to send
the layer l to the PS. On the contrary, if Dt(l) is large, it
means that the local model differs greatly from the average
global model, so the workers need to send layer l to the PS.
We define Dt(l) = 1

N

∑N
i=1 D

t
i(l). Dt

i(l) is the consensus
distance of worker i. If the layer uses centralized method,
Dt+1

i (l) is defined as Dt+1
i (l) = ||w̄t+1(l)−wt+ 1

2
i (l)|| ,where

w
t+ 1

2
i is the model of worker i which finishes performing

local training after round t and w̄t+1(l) = 1
N

∑N
i=1 w

t+ 1
2

i (l).
If the layer uses decentralized method, Dt+1

i (l) is defined as
Dt+1

i (l) = ||w̄t+1(l)−wt+1
i (l)||, where wt+1

i (l) is the model
of worker i which finishes aggregation using the models
received from neighbors after round t.

However, in DFL, the average model w̄t+1(l) is not avail-
able in practice. So when the layer adopts decentralized
method to update the model, we will use the following method
to calculate the consensus distance:
Dt+1

i (l)

= ||w̄t+1(l)− wt+1
i (l)||

=
∣∣∣∣ 1

N

∑N
j=1 w

t+ 1
2

j (l)

− (w
t+ 1

2
i (l) +

∑N
j=1 u

t
i,jAi,j(w

t+ 1
2

j (l)− w
t+ 1

2
i (l)))

∣∣∣∣
=

∣∣∣∣∑N
j=1

w
t+1

2
j (l)−w

t+1
2

i (l)

N
− ut

i,jAi,j(w
t+ 1

2
j (l)− w

t+ 1
2

i (l))
∣∣∣∣

We set ut
i,j = 1

N for simplicity, and then Dt+1
i (l) is the

possible maximum value, thus it follows:
Dt+1

i (l)

=
∣∣∣∣∑N

j=1

(1−Ai,j)(w
t+1

2
j (l)−w

t+1
2

i (l))

N

∣∣∣∣
≤ 1

N

∑N
j=1(1−Ai,j)D

t+1
i,j

where Dt+1
i,j (l) = ||wt+ 1

2
i (l)− w

t+ 1
2

j (l)||,
Dt+1

i,j(max)(l)

= ||wt+ 1
2

i (l)− w
t+ 1

2
k (l) + w

t+ 1
2

k (l)− w
t+ 1

2
j (l)||

≤ ||wt+ 1
2

i (l)− w
t+ 1

2
k (l)||+ ||wt+ 1

2
k (l)− w

t+ 1
2

j (l)||
= Dt+1

i,k (l) +Dt+1
k,j (l)

Dt+1
i,j(min)(l)

= ||wt+ 1
2

i (l)− w
t+ 1

2
k (l)− (w

t+ 1
2

j (l)− w
t+ 1

2
k (l))||

≥ ||||wt+ 1
2

i (l)− w
t+ 1

2
k (l)|| − ||wt+ 1

2
k (l)− w

t+ 1
2

j (l)||||
= ||Dt+1

i,k (l)−Dt+1
k,j (l)||

Thus, we can estimate Dt
i,j(max)(l) as D̂t

i,j(max)(l):

D̂t
i,j(max)(l) = min

k∈[N]−{i,j}
(Dt

i,k(l) +Dt
k,j(l)) (16)

we also can estimate Dt
i,j(min)(l) as D̂t

i,j(min)(l):

D̂t
i,j(min)(l) = max

k∈[N]−{i,j}
(||Dt

i,k(l)−Dt
k,j(l)||) (17)

If Dt
i,j(max)(l) is used to calculate Dt(l), Dt(l) is recorded

as Dt
max(l). D

t
min(l) is the same.

tps and tnb represent the total time when the layers are
sent to the PS and the neighbors. If tps

tnb
is low, we need to

arrange more layers to adopt centralized method. So ptl which
represents the probability of transmitting layer l to the PS is
inversely proportional to tps

tnb
.

Based on the above analysis, we determine the variable
ptl by using the following equation (We perform LDC when
the round t=nT , T is the interval of performing two adjacent
LDC):

ptl =
[λ

∑nT
h=(n−1)T Dh+1(l) + (1− λ)(e|d−dm|)]e

1
△ξ

e

√
tps
tnb

(18)
If the layer uses decentralized FL, we will compute the

ptl(max) using Dh
max(l) and ptl(min) using Dh

min(l) to decide
whether the layer will use centralized FL. △ξ represents the
average accuracy improvement of the models. The minimum
△ξ is set as 20%. If the accuracy improvement is lower,
we will increase the ptl to make more layers use centralized
mechanism. So we add e

1
△ξ to the equation. We compute the

average number of the layers using the decentralized method
and denote it as dm, and use d to represent the number of
layer l. We use ptl to determine the probability of the layer l to
use the centralized method. The layer with higher ptl will be
preferentially chosen to use the centralized method. We use
the exponential moving average to smooth the probability:

Pl = φptl + (1− φ)Pl (19)

where φ (0 ≤ φ ≤ 1) is a hyperparameter that reflects the
weight of the previous probability and the newly-computed
probability. We use K to denote the number scale of Pl. For
example, if Pl = 5 × 10−4, then K = −4. We use V (l) to
represent the communication rounds when layer l uses central-
ized FL. We use Vmax to represent the total communication
rounds. We use H(l) to denote the communication rounds
when layer l uses the decentralized method. Because we want
the layers which perform less centralized FL to have a high
probability of performing centralized FL, we add a penalty
item for the probability Pl. If the layer l is in L1, we use Eq.
(20) to calculate the decision variable Rl. If the layer l is in
L2, we use Eq. (21) to calculate the decision variable Rl.

Rl = Pl + 10K
√

ln(t+ 1)(1 +
Vmax

V (l) + 1
) (20)

Rl = Pl + 10K
√

ln(t+ 1)

1 + Vmax −H(l)
(21)

Algorithm 2 LDC
Input: the probability of the layers Rl; T1, T2; S1, S2

Output: L1 and L2.
1: while round t=nT do
2: if

∑
l∈L1

Rl > T1 then
3: S1 = |L1|;
4: else
5: S1 = max{S1 − 1, 1};
6: end if
7: choose S1 layers in L1 with the largest Rl and these

S1 layers perform centralized FL (clear L1 and insert
these these S1 layers to L1).

8: if
∑

l∈L2
Rl(max) > T2 then

9: S2 = max{|L2|/2, 1};
10: else
11: S2 = 0;
12: end if
13: choose S2 layers in L2 and these S2 layers perform

centralized FL (insert these these S2 layers to L1);
14: clear L2 and add the unselected layers to L2;
15: end while

We design a method to decide the layer distribution based
on consensus distance (LDC) in Algorithm 2. When perform-
ing LDC for the first time, we first choose the minimum layer,
and choose another L-S1-S2-1 layers which are next to the
minimum layer with the smallest sizes to use the decentralized
method. The average number of these layers is denoted as dm.
The rest layers adopt centralized method. When it is not the
first time to perform LDC, we first sum up Rl of the layers in
L1. If the sum is larger than the threshold T1, S1 is set as |L1|
(Line 2-3). S1 is the number of the layers which continue to
perform centralized FL. If the sum is lower than the threshold
T1. S1 will minus 1 (Line 5). Then we choose S1 layers in L1

with the largest Rl and these S1 layers perform centralized FL
(Line 7). Because the estimated values of Dt(l) of the layers
in L2 differ significantly from the actual value, we will not
compare them with the Dt(l) of the layers in L1 together. If
we use ptl(max) to compute Rl, we denote Rl as Rl(max), and
if we use ptl(min) to compute Rl, we denote Rl as Rl(min).
We sum up Rl(max) of the layers in L2 to compare it with
the threshold T2. If the sum is larger than T2, S2 is set to
be max{|L2|/2, 1}, otherwise S2 = 0 (Line 8-11). And then
we choose S2 layers in L2 to use the centralized method. If
S2 isn’t 0, we sort the layers by Rl(max) using descending
order. If the difference between the value of the S2-th and
the (S2+1)-th Rl(max) is less than a threshold, we choose S2-
1 layers with the highest Rl(max) and we choose one layer
of the S2-th and the (S2+1)-th layers with higher Rl(min).
Otherwise, we choose S2 layers with higher Rl(max), and
these layers perform the centralized FL (Line 13). After that,
we clear L2 and add the unselected layers to L2 (Line 14).
In the validation experiment, the LDC method can accelerate
the training speed, but the final accuracy may be reduced. So

0 2 4 6 8 10 12 14
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Time(×1000s)

 FedAvg
 D-PSGD
 NetMax
 FedCD

(a) node=5

0 2 4 6 8 10 12 14 16 18
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Time(×1000s)

 FedAvg
 D-PSGD
 NetMax
 FedCD

(b) node=10

Fig. 2: AlexNet over CIFAR-10 under IID setting.

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Time(×1000s)

 FedAvg
 D-PSGD
 NetMax
 FedCD

Fig. 3: VGG-9 over
CIFAR-100.

AlexNet VGG9
0

50

100

150

200

250

300

Tr
af
fic

(×
10

00
M
b)

Model

 FedAvg
 D-PSGD
 NetMax
 FedCD

Fig. 4: Total traffic in the
network

after performing LDC for some rounds, the workers will use
the LDLS method to achieve higher accuracy.

IV. EXPERIMENTS

A. Experiment Platform

We perform experiments on an AMAX deep learning
workstation equipped with an Intel(R) Core(TM) i9-10900X
CPU, 4 NVIDIA GeForce RTX 2080Ti GPUs and 128 GB
RAM. On the workstation, we implement 5-10 processes to
simulate 5-10 workers and implement 1 process to simulate
the parameter server. The execution of each worker’s model
training is based on the PyTorch framework [16]. The socket
library of Python [16] is used to build up communication
between workers and the parameter server.

B. Models and Datasets

The experiments are conducted on three well-known
DNNs: VGG-9, VGG-16 [17] and AlexNet [18], which
represent the middle-size model (VGG-9) and the large-size
models (VGG-16 and AlexNet). The sizes of DNNs are
13.33MB,128.25MB and 88.78 MB respectively. AlexNet is
trained over CIFAR-10, which includes 50,000 images for
training and 10,000 for testing. The images in CIFAR-10
are 32×32×3 dimensional and are labeled in 10 classes.
VGG9 and VGG16 are trained over CIFAR-100 dataset which
consists of 100 classes. We employ the SGD [6] optimizer
for AlexNet, VGG-16 and VGG-9 and the learning rates are
initialized as 0.01. The models are trained with a batch size
of 64.

C. Baselines and Metrics

Baselines: We choose three classical and efficient algo-
rithms as baselines for performance comparison, which are
summarized as follows:

0 5 10 15 20 25
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Time(×1000s)

 FedAvg
 D-PSGD
 NetMax
 FedCD

(a) non-IID 50%

0 5 10 15 20 25
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Time(×1000s)

 FedAvg
 D-PSGD
 NetMax
 FedCD

(b) non-IID 70%

Fig. 5: AlexNet over CIFAR-10 under different non-IID
levels.

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Time(×1000s)

 FedAvg
 D-PSGD
 NetMax
 FedCD

Fig. 6: VGG-16 non-IID
50%

0.3 0.5 0.7
0
2
4
6
8

10
12
14

Ti
m

e
×1

00
0s

Non-IID level

 FedAvg
 P-DSGD
 NetMax
 FedCD

Fig. 7: Time cost under dif-
ferent non-IID levels

• FedAvg [6] is a famous algorithm in federated learning in
which the workers send the entire model to the parameter
server and download the models after aggregation at PS.

• D-PSGD [9] is a famous algorithm in DFL. Each worker
sends the trained model to the neighbors and each worker
aggregates the models locally.

• NetMax [19] is a communication-aware DFL technique
over the heterogeneous network. It enables each worker
to asynchronously pull models from one peer for ag-
gregation. The peers with higher bandwidth are selected
with higher probabilities.

Metrics: We adopt the following metrics to evaluate the
performance of our proposed FedCD and baselines.

• Test accuracy is the amount of the right data predicted
by the model divided by the amount of all the data. It is
used to test whether the method can converge or not.

• Completion time is the time when each worker finishes
local training and model aggregation. It is used to
evaluate the training speed.

• Network traffic is the total size of the models transmit-
ted through the network, which is adopted to quantify
the communication cost.

D. Overall Performance

Training Performance: We use LDLS to test the per-
formance of FedCD under IID settings. Fig. 2 shows the
training performance of AlexNet over CIFAR-10 with 5-10
workers under IID settings. Fig. 3 shows the performance
of VGG-9 over CIFAR-100. As we can see in Fig. 2-3, our
proposed FedCD converges faster than FedAvg, D-PSGD,
and NetMax. This is because FedCD sends the model to the
PS and the neighbors simultaneously which can save time.

0 20 40 60 80 100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Round

 Exp1
 Exp2
 Exp3

(a) The difference between
using LDC and LDLS.

0 20 40 60 80 100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Round

 Exp1
 Exp2
 Exp3

(b) Performance on
different section selection.

Fig. 8: Experiments using LDC

Fig. 4 shows the total traffic in the network when AlexNet
reaches an accuracy of 70% and VGG9 reaches an accuracy
of 50%. We can find out that FedCD consumes the least
traffic. FedCD needs 22 rounds for AlexNet and 30 rounds for
VGG9 to reach the target accuracy which uses the least rounds
compared to the three baselines. In Fig. 2 we can find out
that when the scale of workers becomes larger, our proposed
FedCD still maintains its advantages over the baselines.

Performance on non-IID Data: We use LDLS to test the
performance of FedCD under non-IID settings. LDLS cannot
perform well when the number of nodes is large and the
epochs of a communication round are small under non-IID
settings. So in our experiments, we use 8 workers and the
number of epochs in a communication round is set as 20. We
distribute the dataset into different Non-IID levels χ (e.g.,
30%, 50%, and 70%) as suggested in [20]. As we can see in
Fig. 5-6, we train AlexNet over CIFAR-10 and train VGG-
16 over CIFAR-100 under non-IID settings. FedCD outper-
forms baselines at all non-IID levels. For example, FedCD
achieves an accuracy of 76.67%, when we train AlexNet
over CIFAR-10 with χ=50%, which is higher than that of
FedAvg (76.42%), D-PSGD (73.37%) and NetMax (73.79%).
This is because FedCD combines the advantage of centralized
and decentralized methods which is more robust in non-IID
settings. Secondly, as χ increases, the time requirement of
each system increases when achieving the same accuracy. But
Fig. 7 shows that FedCD is more robust without a significant
increase in the completion time when we train AlexNet over
CIFAR-10 and set the accuracy of 72%, compared with
the baselines. For FedCD, the time consumption is 5,860.8s
(χ=30%), 6,837.6s (χ=50%) and 7,326s (χ=70%), while they
are 7,000.4s, 9,116.8s, 13,349.6s for NetMax. This is because
the per-epoch completion time of FedCD is much shorter than
other systems, and FedCD iterates more epochs and achieves
a better performance under a given time budget.

Performance of LDC: We conduct some experiments to
test the effect of the LDC algorithm using AlexNet over
CIFAR-10 with 10 workers. In Fig. 8(a), the first experiment
uses the LDLS algorithm to train the model, and the second
experiment combines the LDC and LDLS algorithms. For
the first 15 rounds, we use the LDLS algorithm and for
the rest rounds, we use the LDC method and don’t change
the layer distribution after 15 rounds. The third experiment

uses LDLS for the first 15 rounds. For the rounds 15-30,
we use LDC, and for the rounds after 30, we use the LDLS
method again. We can find out in Fig. 8(a) that in the first
experiment, the improvement of accuracy is very slow at
the beginning, experiments 2 and 3 converge faster than
experiment 1. However, the final accuracy of experiment 2 is
lower than that of experiments 1 and 3. Experiment 3 performs
well on both training speed and final test accuracy.

We continue to conduct three experiments to test the
performance of LDC. In Fig. 8(b), all the three experiments
use LDLS at the beginning. In the intermediate stage, all
the three experiments use LDC. Experiment 1 changes the
layer distribution at rounds 15 and 30. Experiment 2 changes
the layer distribution at rounds 15, 30, and 45. Experiment
3 changes the layer distribution at rounds 10, 20, and 30.
We continue to use the LDLS method after round 45 in
experiment 1, round 60 in experiment 2 and round 40 in
experiment 3. We can observe in Fig. 8(b) that experiment
3 converges faster than its two counterparts at the beginning,
however, its training speed falls behind after 50 rounds and
the final test accuracy is the lowest in the three experiments.
Experiment 1 converges faster than its two counterparts after
round 50 and it reaches the highest test accuracy in the end.
Thus the number of training sections of LDC (when to change
the layer distribution) is essential to achieve quick training
speed and high test accuracy.

V. CONCLUSION

In this paper, we propose a FL framework named FedCD,
which is a combination of centralized and decentralized archi-
tectures. The method addresses the challenges of the memory
burden, huge bandwidth pressure, and non-IID local data. We
have further proposed two algorithms to decide which layer
is sent to the PS and which layer is sent to the neighbors. The
experiment results show that FedCD significantly outperforms
baselines.

ACKNOWLEDGEMENT

This article is supported in part by the National Sci-
ence Foundation of China (NSFC) under Grants U1709217,
61936015, 62132019 and 62302145; in part by An-
hui Province Science Foundation for Youths (Grant No.
2308085QF230);in part by Jiangsu Province Science Founda-
tion for Youths under Grant BK20230275; in part by Xiaomi
Young Talents Program.

REFERENCES

[1] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE communications magazine, vol. 58, no. 1, pp. 19–25, 2020.

[2] A. Aral, M. Erol-Kantarci, and I. Brandic, “Staleness control for edge
data analytics,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 4, no. 2, pp. 1–24, 2020.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637–646, 2016.

[5] X. Wei, Q. Li, Y. Liu, H. Yu, T. Chen, and Q. Yang, “Multi-agent
visualization for explaining federated learning.” in IJCAI, 2019, pp.
6572–6574

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial intelligence and statistics. PMLR, 2017, pp.
1273–1282.

[7] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V.
Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14),
2014, pp. 583–598.

[8] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive iot networks,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.

[9] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu,
“Can decentralized algorithms outperform centralized algorithms? a
case study for decentralized parallel stochastic gradient descent,” arXiv
preprint arXiv:1705.09056, 2017

[10] M. Waqas, Y. Niu, M. Ahmed, Y. Li, D. Jin, and Z. Han, “ Mobility
aware fog computing in dynamic environments: Understandings and
implementation,” IEEE Access, vol. 7, pp.38 867–38 879, 2018

[11] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[12] Afshin Abdi, Saeed Rashidi, Faramarz Fekri, Tushar Krishna ”Restruc-
turing, Pruning, and Adjustment of Deep Models for Parallel Distributed
Inference” arXiv preprint arXiv:2008.08289, 2020.

[13] Wang J , Chai Z , Cheng Y , et al. ”Toward Model Parallelism for Deep
Neural Network based on Gradient-free ADMM Framework.”20th IEEE
International Conference on Data Mining, ICDM ,2020, pp. 591–600

[14] Liao Y, Xu Y, Xu H, et al. Adaptive Configuration for Heterogeneous
Participants in Decentralized Federated Learning[J]. arXiv preprint
arXiv:2212.02136, 2022

[15] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3043–3052

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012 .

[19] Zhou P, Lin Q, Loghin D, et al. Communication-efficient decentralized
machine learning over heterogeneous networks[C]//2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021:
384-395.

[20] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020, pp.
1698–1707.

